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A B S T R A C T

Breast cancer, increasingly prevalent in Zimbabwe, underscores the need to understand
the involved axillary nodal status in diagnosed patients for assessment of disease
severity and its potential progression. This study was undertaken to investigate factors
influencing the number of axillary lymph nodes in breast cancer patients by identifying
the best fitting count regression model, validated through bootstrap resampling. A
retrospective analysis using hospital-based data for patients diagnosed with breast cancer
at one of the two major referral hospitals in Zimbabwe was applied. We evaluated
and compared count regression models – Poisson with Negative Binomial (NB),
Zero-Inflated Negative Binomial (ZINB), Zero-Inflated Poisson (ZIP), Hurdle Negative
Binomial (HNB) and Hurdle Poisson (HP) which are efficient in handling over-dispersed
count data to investigate the various risk factors associated with involved axillary lymph
nodes. Covariates included age, tumor size, tumor grade, estrogen receptor status,
progesterone receptor status and HER2 status. Model diagnostics were assessed using
Aikake Information Criterion and Bayesian Information Criterion. The ZINB and HNB
models outperformed other models, with the HNB model demonstrating consistency
across bootstrap-resampled datasets. Bootstrap resampling validated the reliability of
model estimates, addressing biases caused by small sample sizes. Age was significantly
associated with the zero-inflation component of the HNB model. This study highlights
the importance of selecting appropriate count regression models for analyzing medical
data and demonstrates the utility of integrating bootstrap resampling to ensure robust
statistical inference. The findings provide actionable insights for therapy planning and
resource allocation.
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1. INTRODUCTION
Breast cancer is the second most common cancer in Zimbab-
wean women after cervical cancer [1]. According to Interna-
tional Agency for Research on Cancer (IARC) [2], breast cancer
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accounted for 17.1% of cancers in 2018 in Zimbabwe, and glob-
ally in 2020 breast cancer had the highest incidence at 11.7%
compared to other cancers. With a staggering projection of an
increase of breast cancer incidence in Zimbabwe from 1,886 in
2018 to 4,185 in 2040 by the World Health Organisation, more
advances need to be made in diagnostic and treatment strategies.
Axillary lymph node involvement is an essential component in

the staging of breast cancer. In the TNM staging system, T rep-
resents the size and extent of the tumor which can be assessed
clinically or through imaging techniques whilst M signifies the
presence or absence of distant metastases [3]. Our study, how-
ever, focuses on the N component, representing lymph nodes in-
volvements which can be determined clinically by examination
and pathologically through processes that include needle biopsy
axillary surgery. Axillary nodal status is one of the most impor-
tant prognostic factors in breast cancer which has also become
an important predictive tool to adapting systemic therapies [4].
The lymph node status gives guidance to therapeutic strategies
and is a measure of prognosis in patients especially those with
distant metastases [5]. If a tumor has not spread to the lymph
nodes, chances of the cancer being treatable are high.
With the number of involved axillary lymph nodes, which is

a count variable not normally distributed within the population
of individuals diagnosed with breast cancer, the Poisson Regres-
sion model (PRM) would provide an appropriate analysis where
the dependent count variable may be explained by the covari-
ates. The PRM however, has a restrictive assumption of equality
of the mean and variance of the outcome variable, conditional
on the covariates, whilst the Negative Binomial (NB) assumes
an over-dispersion of the outcome variable. The NB model, also
known as the Poisson-gamma, is a generalization of the Poisson
model with a two parameter distribution that relaxes the restric-
tive assumption made in Poisson regression [6].
Zero count data and over-dispersion are often ubiquitous in

medical health investigations. Lambert [7], proposed the Zero
Inflated Poisson (ZIP) as a model for count data with extra zeros,
as a two part model assuming that with probability p , 0 is the only
possible observation and with probability 1-p, any positive inte-
ger is observed. Greene [8], introduced the Zero-Inflated Neg-
ative Binomial (ZINB) with capacity to efficiently model count
outcomes with over-dispersion and excess zeros. Zero inflated
count models assume that the data is a mixture of two separate
data generation processes, the first one generating zeros only and
the second one being either a Poisson or a NB data generating
process [9]. The zero observations have two different origins:
“structural” and “sampling”. Hurdle Poisson (HP) and Hurdle
Negative Binomial (HNB) models have also been developed to
model zero-inflation where the Poisson or NB models are unre-
alistic [10, 11]. These models which assume that zero counts in
the outcome are generated from a different process than the pos-
itive counts can be an alternative if the positive counts have extra
overdispersion [6].
Recent developments have been proposed to address tradi-

tional Poisson regression models limitations. For instance,
Adesina [12] employed a Bayesian multi-level framework us-
ing the No-U-Turn Sampler to sample from posterior distri-
butions and demonstrated its effectiveness on both over- and
under-dispersed data simulated from a discrete Weibull distri-

bution. Their findings underscored the superiority of the geo-
metric model over other alternatives for handling over-dispersed
data. Maxwell et al. [13] compared generalized poisson regres-
sion to traditional and advanced count models (Poisson, NB, and
Conway-Maxwell-Poisson) in the context of road traffic crash
data and found that Generalized Poisson had the smallest AIC
and BIC values, indicating superior model fit. This reinforces
the importance of using tailored models for count data to achieve
robust and reliable results.
Count models have also been applied to medical outcomes,

including in counts of involved lymph nodes in breast cancer.
Swain et al. [14], Feng et al. [15], and Liaqat et al. [16] utilized
suchmodels to analyze lymph node involvement in breast cancer,
while Abu et al. [17] applied them to health services utilization.
Nketia et al. [18] demonstrated their utility in studying schis-
tosomiasis, and Yirga et al. [19] applied similar approaches in
HIV-related studies, specifically for CD4 count data. Pavlicova
et al. [20] applied the models to assess the effect of an HIV-
risk reduction intervention on unprotected sexual occasions in a
clinical trial, ultimately identifying the ZINBmodel as providing
the best fit. These applications highlight the versatility of zero-
inflated and hurdle models in addressing over-dispersion and ex-
cess zeros in medical data, aligning closely with the objectives
of this study. Despite their utility, inconsistencies often arise in
findings due to variations in model specifications and data char-
acteristics. For example, some studies reported that ZINB mod-
els outperform other count models, while others found ZINB and
hurdle models indistinguishable in terms of goodness-of-fit mea-
sures [15, 16, 18, 20–24]. These variations emphasize the need
for further research to clarify the relative performance of these
models under different data conditions, a focus that this study
aims to address.
Moreover, while zero-inflated and hurdle models are well-

documented approaches for analyzing over-dispersed count data,
limited research has focused on assessing the stability of model
selection procedures. Integrating bootstrap resampling for vali-
dating model coefficients offers a promising yet underexplored
alternative for improvingmodel reliability. Although count mod-
els provide valuable insights into associations with covariates,
their coefficient estimates are often sensitive to sample variabil-
ity, a challenge that becomes especially pronounced in studies
with limited observations. This underscores the need for robust
methodological approaches that enhance the stability and relia-
bility of statistical inference, particularly in resource-constrained
settings. Larger sample sizes generally provide more statisti-
cal power, allowing for more precise and reliable estimates of
model parameters [25]. However, in resource-constrained con-
texts, obtaining large sample sizes can be challenging due to lim-
ited resources, access to data, and other logistical constraints.
This limitation often results in highly variable parameter es-
timates, potentially undermining the reliability of conclusions.
To address this, our study introduces a novel approach by inte-
grating bootstrap resampling, a technique introduced by Efron
[26], with count models to enhance the robustness and reliabil-
ity. The resampling process generates multiple bootstrap sam-
ples from original observations with replacement, allowing for
the estimation of variability and stability in model coefficients.
This approach yields more reliable confidence intervals and mit-
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igates biases caused by small sample sizes, which are rarely ad-
dressed in existing studies. Although similar resampling tech-
niques have been applied in other fields, such as those demon-
strated by Troung et al. [27] and Sillabutra et al. [28], their
application to count regression models in medical research re-
mains limited. This methodological advancement provides a
valuable framework for robust analysis in resource-constrained
settings, ensuring reproducibility and applicability across simi-
lar contexts.

Our overall objective was to identify the best-fitting model to
analyze the risk factors associated with axillary nodal involve-
ment, utilizing real life, distinct hospital based data collected at
one of the two public referral oncology centres in Zimbabwe. By
applying the innovative integration of bootstrap resampling in the
framework of count models to this unique setting, we provide re-
liable insights into the factors influencing axillary lymph node
involvement in breast cancer patients. This dataset enables us to
address specific challenges faced in a Sub-Saharan country, such
as limited healthcare resources and access to timely diagnosis
and treatment, contributing to a deeper understanding of breast
cancer prognosis in similar settings. By improving the precision
of model estimates, our approach has significant implications
for clinical decision-making and policy formulation. Specifi-
cally, the findings aim to inform resource allocation strategies
and facilitate the identification of high-risk patients for targeted
interventions. Ultimately, this research contributes to improved
patient outcomes and offers a robust framework for advancing
breast cancer care in resource-constrained environments.

2. MATERIALS AND METHODS
This section describes the data used in the study and the model
building process. The mathematical formulation of the count re-
gression models used is also discussed together with the model
performance measures.

2.1. STUDY DESIGN
This retrospective study makes use of hospital data compiled
from the records of 379 patients diagnosed with breast cancer be-
tween January 2015 and December 2019 at Parirenyatwa Radio-
therapy Centre, which is one of the two referral oncology centres
in Zimbabwe. Only 136 patients had their nodal count recorded.
Covariates considered in this study were guided by the literature
which included demographic and clinical variables: age, tumor
size (cm), tumor grade (one, two and three), estrogen receptor
(ER) status (positive / negative), progesterone receptor (PR) sta-
tus (positive / negative) and Human Epidermal Growth factor Re-
ceptor 2 (HER2) status (positive /negative) [14, 16, 24]. The out-
come count variable was the number of involved axillary lymph
nodes. The studywas approved by theMedical Research Council
of Zimbabwe (MRCZ) and Joint Research and Ethics Committee
(JREC) of the Parirenyatwa Group of Hospitals and University of
Zimbabwe.

Figure 1 is the flowchart of the proposed steps in selecting the
best count regression model. We visually examined the num-
ber of involved lymph nodes using a bar plot in Figure 2. Data
preprocessing was conducted before statistical model building.
The variables ER, PR and HER2 were label encoded and tumor
grade was treated as an ordinal variable. Data normalization is an

Figure 1. Flowchart for involved lymph nodal count model selection proce-
dure. This illustrates the step-by-step process for selecting the appropriate
model for analyzing involved lymph nodal counts. Each step is detailed to
ensure clarity in the decision-making process, highlighting key criteria and
decision points.

important step in data preprocessing as it improves model perfor-
mance and training stability [29]. We applied the min-max nor-
malization technique where the numeric values of age and tumor
size were reduced to a scale between 0 and 1 using:

zi =
xi − min(xi)

max(xi) − min(xi)
, (1)

where min and max are the minimum and maximum values of
the mentioned numerical variables over the given data range.

2.2. MODELING FRAMEWORK
Count models allow regression analyses when the outcome vari-
able of interest is a numerical count. The PRM was explored
and checked for overdispersion. The NB, an alternative to the
PRM [11], especially useful for data with overdispersion was
then employed. In total, six, models, which represented vari-
ous combinations of three types of generalized count regression
models (one part, zero-inflated and hurdle) with one of the two
distributions (PRM or NB) were fitted. The model parameters,
derived by a log-likelihood estimator give the estimated effect
of each covariate on the involved axillary nodal count data. The
Pearson dispersion statistic which was used to identify over dis-
persion was computed and interpreted in all models. A disper-
sion parameter greater than 1 implied that the involved axillary
nodal count data wasmore variable thanwould be expected under
standard Poisson or negative binomial distribution, with a value
less than 1 indicating that the nodal count data is less variable
than expected. We interpreted the ZIP, ZINB and hurdle models
based on the zero-inflation component and NB or Poisson com-
ponent. Over and above the interpretation of the coefficients and
dispersion parameters of the models, we evaluated the goodness
of fit measures using the Akaike Information Criterion (AIC),
Bayesian Information criterion (BIC) and AICc to determine the
best fitting model. A p < 0.05 was considered as the statisti-
cal level of significance for the predictors used in all the models.
Statistical analysis was done in R software.
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2.2.1. Statistical models formulation
Count regression models employed in the study are described in
detail below.

Poisson regression model (PRM):
The PRM is a Generalized Linear Model (GLM), the standard
model for modelling count data with a non-negative integer val-
ued dependent count variable [30]. In this study, Yi denotes
the count output variable which is number of axillary lymph
nodes involved in the ith women diagnosed with breast cancer:
yi ∈ {0, 1, 2, . . .}. Given that Yi is a counts variable, we assume
that each observation yi is from a Poisson distribution with mean
µi (mean number of involved nodes): Yi ∼ Poisson(µi). The pa-
rameter µi controls the count rate in the ith outcome. Thus, the
PRM is derived from the assumption that the logarithm of the ex-
pected value of the outcome variable can be modeled as a linear
combination of unknown parameters and is given by

ln µi = β0 + β1xi1 + . . . + βqxiq = β0 +

q∑
j=1

βjxij, (2)

or, equivalently

µi = eβ0+β1xi1+...+βqxiq = eβ0+
∑q
j=1 βjxij . (3)

The probability mass function of the Poisson random variable
with parameter µi is given by:

f (Yi = yi | xi) =
e−µiµyii
yi!
, yi = 0, 1, 2, . . . (4)

Assuming that the sample outcomes are independent, the joint
likelihood function of sample outcomes is given by:

L(µi; yi, . . . , yn) =
n∏
i=1

e−µiµyii
yi!
, (5)

and the log-likelihood function is given as:

lnL(µi; yi, . . . , yn) = −
n∑
i=1

µi −

n∑
i=1

ln(yi!) + ln(µi)
n∑
i=1

yi. (6)

Assuming a linear relationship between the log of the mean and
the covariates, we have E(yi | xi) = µi = exp(x′i β) also expanded
as eβ0+β1x1+···+βqxq . The intercept is β0 and the regression coeffi-
cients for the covariates are β1, ..., βq, where q is the number of
covariates in the model which represent the expected change in
the log of the mean per unit change in the covariates. We thus
can express the log-likelihood given as:

lnL(β) =
n∑
i=1

(
yix′i β − exp(x′i β) − ln(yi!)

)
. (7)

We then optimized Eq. (7) iteratively up to convergence to amax-
imum value, that is until

lnL(β) =
n∑
i=1

(
yix′i β − exp(x′i β) − ln(yi!)

)
= max. (8)

There are several optimization algorithms commonly em-
ployed for parameter estimation such as the Newton-Raphson

(NR), Iterated Re-weighted Least Squares (IRWLS) also consid-
ered as Fisher Scoring and quasi-likelihood estimation [31, 32].
In this specific study, we utilized the IRWLS due to faster con-
vergence and accuracy.
Overdispersion assessment using Pearson residuals The PRM
has a restrictive property which requires the equality of the mean
and variance of the outcome count variable. Over-dispersion
arises when the variance of the response count variable is greater
than the mean that is Var[yi|xi] > E[yi|xi]. Using the PRM in
over-dispersed data leads to inefficient estimates and biased stan-
dard errors, most often, less than those inherent in the data [9].
However, real life medical data is often characterized with over-
dispersion. Failure to correct for such bias in model standard
errors, may lead to a higher risk of committing type I error more
often than at the prescribed level of significance. We checked for
over-dispersion using the ratio of the sum of the squared Pear-
son residuals to the residual degrees of freedom wherein a value
greater than 1 indicates over-dispersion, and as such the NB be-
comes a better alternative to the PRM.

Negative binomial model (NB):
The NB distribution is a mixture of a family of Poisson distri-
butions with gamma mixing weights [33]. The NB model can
be considered as a generalization of the PRM that allows a vari-
ance higher than the corresponding mean. This model has com-
monly been used to analyse over-dispersed data in other studies
[19, 24]. Structurally, the NB model adds a parameter which
allows the conditional variance of the count variable to exceed
the conditional mean. This parameter is among the parameters
to be estimated from the likelihood of the data. We thus sub-
sequently propose the negative binomial method where an extra
(dispersion) parameter,φ, is introduced in the random structure
Yi ∼ Poisson(µi) to control for overdispersion.

Model formulation:
In formulating the NB model, we start with the standard PRM
for count data model generation which we adjust in the system-
atic structure resulting in the mean µi = exp(x′i β+ ϵi), where ϵ is
the random error term assumed to be not correlated with the co-
variates xi. Defining the error term, ϵi to be log(φi), the adjusted
random structure of the PRM becomes:

Yi|φi ∼ Poisson(µiφi), (9)

where φi is non negative and is assumed to follow a gamma dis-
tribution [6, 34, 35]: φi ∼ Gamma(a, b). In order for the mean
of Yi to remain unchanged as E[Yi] = µi, an assertion of the con-
ditional expectation, E[Yi|φi] = µi is obtained in the following
steps:
Given:

E[Yi] = Eφi [E[Yi|φi]] = Eφi [µiφi] = µiE[φi] = µi. (10)

This implies that E[φi] = 1. With the assumption that φi follows
a gamma distribution, it follows that E[φi] = a

b and Var(φi) = a
b2 .

Since we have E[φi] = 1, and by letting σ2 = Var(φi), then
we have a = b = 1

σ2 . This results in the 1-parameter Gamma-
Poisson mixture model, that is, φi ∼ Gamma( 1

σ2 ,
1
σ2 ). Having Yi
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taking discrete values with the conditional Poisson distribution

P(Yi = yi | φi) =
e−µiµyii
yi!
, (11)

and φi following a gamma distribution:

f (φi,
1
σ2 ,

1
σ2 ) =

(φi)
1
σ2 −1e−

1
σ2 φi

(
1
σ2

) 1
σ2

Γ
(

1
σ2

) . (12)

We evaluate the integral of the product of Poisson and the gamma
distribution functions using:

P(Yi = yi) =
∫ +∞

0
P(Yi = yi | φi) f (φi) dφi, (13)

to obtain the following negative binomial (Poisson-Gamma)
model:

f (Yi | φi) =
Γ
(

1
σ2 + yi

)
yi!Γ

(
1
σ2

) (
1
σ2

) 1
σ2 µ

yi
i(

µi +
1
σ2

) 1
σ2 +yi
. (14)

Defining the dispersion parameter of φi as Φ = 1
σ2 we have the

probability function:

P(Yi = yi) =
Γ(Φ + yi)
yi!Γ(Φ)

(Φ)Φ
µ
yi
i

(µi + Φ)Φ+yi
. (15)

Similarly, as in the PRM, from the systematic structure of the
model,

µi = exp
(
x′i β

)
, (16)

it follows that

log(µi) = x′i β. (17)

Lawless [36] applied one of the properties of the gamma distri-
bution

Γ(Φ + 1) = ΦΓ(Φ), (18)

which results in the expression:

logΓ(Φ + yi)
Γ(Φ)

=

yi−1∑
j=1

log(Φ + j). (19)

This leads to the negative binomial log-likelihood, parameterized
in terms of β, which are the model coefficients expressed as:

L(Φ, β) =
n∑
i=1


yi−1∑
j=0

log(Φ + j)

 − log(yi!) + Φ log(Φ)

+yi(x′i β) − (Φ + yi) log
(
Φ + exp

{
x′i β

})]
. (20)

The parameter Φ as introduced in Eq. (15) represents overdis-
persion. It is well noted that when Φ = 0, the NB becomes a
Poisson distribution. In the presence of overdispersion, the NB
count model may be a better fit. After confirming overdispersion
in the PRM, the alternative NB model is estimated through the
likelihood criterion in Eq. (20), which should also be iterated to
a maximum value, that is,

L(Φ, β) =
n∑
i=1


yi−1∑
j=0

log(Φ + j)

 − log(yi!) + Φ log(Φ) + yi(x′i β)

−(Φ + yi) log
(
Φ + exp

{
x′i β

})]
= max . (21)

In our case the iterative algorithm used was IRWLS.

Zero inflated models
In the presence of excess zeros, count data are often not effi-
ciently handled by the standard Poisson and NB model [9]. The
Zero inflated models are statistical models that analyse count
data exhibiting overdispersion and an excess of zero counts. We
therefore further propose the ZINB and ZIP regression models
which are often used when the response count variable exhibits
over dispersion and has excess zeros. The zero inflated models
assume a two part model processes which are estimated from the
mixture of binary distribution that is degenerate at 0 (structural
zeros) and Poisson gamma distribution for ZINB or Poisson dis-
tribution for positive counts including sampling zeros [7]. We
suppose that

yi =

0 with probability p
Poisson or NegBin with probability 1 − p

, (22)

where p is the logit link modelled function of predictors driving
the excess zeros. Employing the ZIP and ZINB models with
the distinctive ability to account for structural zeros (which
represent a scenario where the absence of involved axillary
lymph nodes is inherent) and sampling zeros which, despite the
potential for involvement, no nodes were observed as involved,
was imperative as both were critical components to consider in
breast cancer patients.

Zero Inflated Poisson (ZIP)
: In the ZIP model, two processes are assumed to generate the
zero values. The first process is due to the structural zeros using
the binomial distribution and the other process is due to the sam-
pling zeros using the Poisson distribution. Structural zeros are
generated using the logit link function, capturing a probability pi
of a structural zero, whilst the modeling of the number of lymph
nodes involved with positive counts is done using the log-linear
equation with a log-link function for µi in the Poissonmodel. As-
suming the involved nodal count data follows a ZIP distribution
we have the model Yi ∼ ZIP(µi, pi). The Poisson general linear
model is given as:

f (yi; µi | yi ≥ 0) =
e−µiµyii
yi!
. (23)

The probability that the nodal count process gives a zero is given
as:

P(yi = 0) = pi + (1 − pi)eµi . (24)

The probability of observing a non-zero count is given by:

P(Yi = yi|yi > 0) = (1 − pi)
e−µiµyii
yi!
. (25)

The probabilitymass function of the ZIP is formulated in Eq. (26)
assuming a combination of the two process zero generation, one
for structural zeros and the other for sampling zeros mentioned
earlier:

P(Yi = yi) =

pi + (1 − pi)f (yi) if yi = 0
(1 − pi)f (yi) if yi = 1, 2, 3, . . .

, (26)
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where f (yi) is the probability function of the Poisson distribution.
The structural zeros are generated using the logit link function for
pi expressed as:

logit(pi) = τi, pi =
λi

1 + λi
, (27)

with

λi = exp τ0 + τ1zi1 + · · · + τmzim. (28)

The z
′

s in Eq.( 28) are the set ofm latent covariates in the logistic
component of the model where zi is the ith row of the data matrix
of the logit model generating the structural zeros, which play a
pivotal role in providing insights into the likelihood of observing
zero counts. These covariates influence the occurrence of struc-
tural zeros, with the regression coefficients used to establish the
probability structured zeros, pi. On the other hand, the sampling
zeros and positive count data is modelled using a log-linear equa-
tion with a log-link function for µi, expressed as:

log(µi) = β0 + β1x1 + · · · + βpxp ⇒ µi = exp(β0 + β1x1

+ · · · + βpxp). (29)

Based on Eq. (26) we can formulate the joint likelihood function
as:

l =
n∑
i=1

yi log(pi) +
n∑
i=1

(1 − yi) log(1 − pi)

 , (30)

which results in the following log likelihood:

L(β, τ;Yi) =
∑
i:yi=0

[
log

(
exp(z′iτ) + exp

(
−x′i β

))]
+

∑
i:yi≥0

[
yix′i β − exp(x′i β) − log(yi!)

]
−

n∑
i=1

log
(
1 + exp(z′iτ)

)
. (31)

The estimates of the unknown regression coefficients
β0, β1, ..., βp, τ0, τ1, ..., τm of the model are obtained using
the maximum likelihood estimation given that yi are indepen-
dent observations with corresponding Xi values of the covariates.
Using Eq. ( 27) and Eq. (29) we may define the occurrence of
structural zeros being influenced by the covariates z′is and the
occurrence of a particular count yi including sampling zeros is
impacted by x′i s covariates. Covariates can be associated with
the probability of a structured zero, pi, as well as the mean
function µi of the count model. pi is modeled with a logistic
regression and µi is modelled with a log-linear equation. The
coefficients for the zero inflated components give the log odds
of observing a zero count instead of a positive count with a
positive coefficient showing that the covariate increases the odds
of observing a zero count. A negative coefficient shows that the
covariate decreases the odds of obtaining a zero count. In the
Poisson or NB model component, the coefficients represent the
expected change in the log of the outcome involved nodal count
variable for one unit increase in the covariate, where a positive
coefficient indicates that the covariate is associated with an

increase in the expected involved nodal count. A negative coeffi-
cient shows that the covariate is associated with a decrease in the
expected involved nodal count. We used a widely used Broyden,
Fletcher, Goldfarb, and Shano (BFGS) [37], a quasi-Newton
optimization method to maximize the likelihood functions to get
the parameter estimates, as this technique has fewer constraints
compared to other methods in a small sample. Quasi-Newton
method, which are algorithms which modify Newton’s method
are fast and accurate approximation techniques.

Zero-inflated negative binomial (ZINB)
: The outcome Yi for individual i is assumed to follow a negative
binomial distribution for positive counts in the ZINB, thus f (yi)
in Eq.( 26) is the negative binomial distribution earlier discussed,
given in Eq. (15). In a similar approach to the ZIP model, the log
link (µi) and logit link function pi is then used as represented in
Eq. (27) and Eq. (29).
Using Eq. (26), we also estimate the unknown coefficients
ϕ, β0, β1, ..., βp, τ0, τ1, ..., τm of the ZINB model with the maxi-
mum values for the log likelihood function in Eq. (32) of the
ZINB model. In this case the log-likelihood function is given
by:

L(Φ, β, τ;Yi) =
∑
i:yi=0

ln
[
pi + (1 + Φ−1µi)−Φ

]
+

∑
i:yi=1,2,3,...

yi−1∑
j=0

ln(j + Φ)

+
∑

i:yi=1,2,3,...

{
− ln(yi!) − (yi + Φ) ln(1 + Φ−1µi)

+yi ln(Φ−1) + yi ln(µi)
}

+

n∑
i=1

ln(1 + pi). (32)

Hurdle models
In contrast to zero-inflated models, hurdle models which assume
all ‘0’ data are structural, are viewed as a two-component mix-
ture model consisting of zero’s and the positive (i.e. non-zero)
following either truncated Poisson or truncated NB distribution.
The first is a binary model to estimate binary process of zero
counts versus positive counts. The second is a zero-truncated
Poisson or NB model to estimate over-dispersed positive counts.
The hurdle model allows different parameters for specifying zero
and the truncated part. The HP model can be written as:

P(Yi = yi) =

pi if yi = 0

(1 − pi)
e−µiµ

yi
i

yi!(1−e−µi )
if yi = 1, 2, 3, . . .

. (33)

The HNB model is represented as:

P(Yi = yi)

=


pi if yi = 0

(1−pi)

1−
(

Y
µi+Y

)Y · Γ(yi+Y )
Γ(Y ) yi!

·
(
µi
µi+Y

)yi
·
(

Y
µi+Y

)Y
if yi = 1, 2, . . . ,

(34)
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where Y is the dispersion parameter. Hence the hurdle model can
be written as:

logit(pi) = ZTi β, (35)

log(µi) = XT
i α. (36)

2.3. PERFORMANCE EVALUATION
In a study that applies several count model frameworks to a
dataset, the performance of the models can be compared using
different goodness of fit measures as vastly described in the lit-
erature. This gives guidance to themost appropriatemodel which
can be implemented in line with the specific nature of the dataset.
Some of the popularly used measures include the -2 log likeli-
hood (also called the deviance) , Akaike Information Criterion
(AIC) as formulated by Akaike [38], Bayesian information Cri-
terion (BIC) first designed by Schwarz [39] and Akaike Informa-
tion Criterionwith small sample correction (AICc) whichwe also
applied in this study. The deviance statistic compares the differ-
ence in probability between the predicted and actual involved ax-
illary lymph nodes for each yi and sums the differences together
to provide a measure of the total error on the count models. In
the zero inflated models, the -2 log likelihood, a measure of the
total deviance, is the sum of the deviance associated with the in-
volved nodal count model and the deviance associated with the
zero inflation model expressed as:

−2 logL = −2
∑
i

(
yi log(µi) − µi − log(yi!)

)
, (37)

where L is the likelihood function of the model, µi and yi are
the predicted and the observed terms of the involved nodal count
outcome variable for ith observation respectively based on the
model.

The AIC is calculated as:

AIC(m) = −2[k − lnL(m)], (38)

where k is the number of covariates in the study and L(m) is the
log-likelihood estimate for model m. The model with the lowest
AIC is considered a better fit.
AICc is defined using the AIC as:

AICc(m) = AIC(m) +
2k(k + 1)

n
− k − 1, (39)

n is the sample size and 2k(k+1)
n −k−1 is the correction termwhich

adjusts the AIC for small sample size bias. Bayesian information
Criterion (BIC) is given by:

BIC(m) = −2 logL(m) log(n)k . (40)

2.4. BOOTSTRAP RESAMPLING OF OBSERVATIONS
After getting the count regression performance results, model
validation is the next crucial step to assess whether they are likely
to hold outside the original data, in this study through a bootstrap
resampling of observations [26]. This approach involves collect-
ing the response and explanatory values for each i observation:

z′i = yi, xi1, xi2 . . . xiq. (41)

Repeating the bootstrap sampling process results in many
bootstrap samples (r bootstrap samples) that are assumed to rep-
resent alternative sample that might have occurred instead of the
original sample and these bootstrap samples can be used to es-
timate properties of estimation process, such as regression coef-
ficient estimates, standard errors and bootstrap confidence inter-
vals. The original n observations can be resampled with replace-
ment, under equal probability 1

n , yielding bootstrap new sets of
r samples of z

′∗
b1, . . . , z

′∗
bn, ensuring that each sample is the same

size as the original dataset. Some researchers have suggested
varying minimum number of iterations to fit the model [27, 40].
Here, 5000 bootstrap samples were generated from the original
dataset. For each bootstrap sample, the model is fitted to predict
the number of involved axillary lymph nodes. The coefficients
from each fitted model is extracted and stored. This process is
repeated for all 5000 bootstrap samples, resulting in a distribu-
tion of coefficient estimates for each predictor. This leads to the
estimation process of the regression coefficient estimates, stan-
dard errors and bootstrap confidence intervals. For each replicate
b1, b2, . . . br , the response mean estimate µ̂∗b and the regression
coefficient estimates

b∗bj = [b∗b0, . . . , b
∗
bq]
′, (42)

can be computed.
The bootstrap averages across r bootstrap replicates for the

response mean

µ̂∗b =
1
r

r∑
b=1

µ̂∗bi, (43)

and the regression coefficients are given by:

b∗b =
1
r

r∑
b=1

b∗bj. (44)

Their standard errors can be approximated as:

SE(µ̂∗b) =

√√
1

r − 1

r∑
b=1

(µ̂∗bi − µ̂
∗
b)

2, (45)

for the bootstrap mean and

SE(b∗b) =

√√
1

r − 1

r∑
b=1

(b∗bj − b∗b)(b
∗
bj − b∗b)′, (46)

for the regression coefficients.
The 95% percentile bootstrap confidence interval, a non-

parametric approach, was constructed from b∗b(lower) <b< b∗b(upper)
where b∗b(lower) = b∗b at 0.025r i.e the value at the 2.5th percentile
and b∗b(upper) = b∗b at 0.975r i.e the value at the 97.5th percentile
of r ordered bootstrap replicates [41, 42].

3. RESULTS
The analysis is based on 136 breast cancer patients eligible for
this study. The plot in Figure 2 shows the involved axillary nodal
count data distribution in breast cancer patients in this study.
Zero counts accounted for 31.6% of the observations. The spike
at the zero counts is evidence that we have zero inflation in our
data.



8 Saruchera et al. / Recent Advances in Natural Sciences 3 (2025) 137

Figure 2. Frequency plot for Axillary Node Counts in Breast Cancer. The
horizontal Axis shows the observed axillary nodal count and the vertical axis
shows the frequency of observation for each count. This plot highlights the
high prevalence of zero counts (patients with no nodal involvement) and a
right-skewed distribution, reflecting overdispersion and zero inflation in the
data.

Table 1. Measure of over-dispersion.
Model Poisson NB ZIP ZINB HP HNB
Pearson
χ2 value/ DF 4.131 0.7378 1.6696 1.0780 1.5627 1.0010

We first applied a Poisson Regression model to our dataset.
The results shown in Table 1 indicated the extent of over-
dispersion in the Poisson Regression model with a high value
of the dispersion parameter of 4.131 which could not be ignored.
We then applied the NB GLM to correct for overdispersion. It is
also vital to interpret the dispersion parameters for the NB and
Poisson component of the ZIP and ZINB models which repre-
sent the overdispersion in the nodal count data. The ratio of the
Pearson Chi-Square statistics is just under 1 for the NB (0.7378)
and just 1 for the ZINB models (1.078) which is not much of
a violation to the dispersion parameter thus no major impact on
the results of the zero inflated model, an indication that the ZINB
model was able to correct for overdispersion. Similarly, for the
HNB the dispersion parameter is approximately 1 (1.010).
Table 2 and Table 3 show the regression coefficients corre-

sponding to covariates used and their corresponding p values.
It is noted that in the PRM, the log-linear coefficients show an
increase in tumor size (p = 0.05) and having tumor grade 2
(p = 0.09) was associated with a higher risk of having more in-
volved lymph nodes compared to small size tumors and grade 1
patients respectively (Table 2). For each additional year, the ex-
pected nodal count decreased by 46% suggesting older patients
tend to have a lower expected involved nodal count compared to
younger patients (p = 0.007). Being HER2 positive was also a
significantly associated with reduced nodal count, having the re-
gression coefficient of -0.255 which equates to an exponentiated
coefficient of 0.775. Hence, there is a 22.5% decline in the rate of
nodal counts involved compared to patients with a negative status
(p = 0.015). ER positive and PR positive status all had positive
effects in the PRM. The estimate effects for most covariates in
the NB were slightly higher compared to those from PRM. In
the zero-inflated and hurdle models, there are two sets of com-
ponents for each model, first showing probability the particular
covariate affected the “structural” zeros and the second showing
the model for the “sampling” zeros or positive counts for HNB.

Table 2. Output results for Poisson and negative Binomial models for num-
ber of involved axillary lymph nodes.

Poisson model
Variable Estimate SE Z P(>|z|)
(Intercept) 1.494 0.150 9.946 < 2e-16
Age -0.616 0.229 -2.688 0.007
Tumor Size 0.482 0.247 1.955 0.051
Tumor Grade (1) 0.161 0.114 1.411 0.158
Tumor Grade (2) 0.149 0.083 1.702 0.089
ER Positive 0.047 0.137 -0.345 0.730
PR Positive 0.196 0.125 1.541 0.123
HER2 Positive -0.255 0.105 -2.440 0.015

Negative Binomial model
Variable Estimate SE Z P(>|z|)
(Intercept) 1.690 0.371 4.561 5.09e-06
Age -0.942 0.546 -1.724 0.085
Tumor Size 0.396 0.633 0.627 0.531
Tumor Grade (1) 0.163 0.279 0.584 0.559
Tumor Grade (2) 0.159 0.201 0.790 0.430
ER Positive -0.132 0.328 -0.403 0.687
PR Positive 0.221 0.299 0.737 0.461
HER2 Positive -0.256 0.246 -1.041 0.298

The count component estimates the expected number of involved
axillary lymph nodes. The zero-component estimates the prob-
ability of having no involved nodes. Across all the models, age
is consistently significant in the zero-component part (Table 3).
However, the effect is negative in the HNB. TheNB fails to detect
a significant effect of age suggesting that considering all zeros
as part of the count process may bias the model against detecting
an effect of age in this sample. This may be an indication of the
presence of structural zeros which the NB does not account for.
In the count part of the Poisson models (Poisson, ZIP and HP),
an increase in tumor size had a significant multiplicative effect
of 1.5 on expected nodal count (p=0.05). The ZIP and HP mod-
els’ count component revealed a significant positive association
for tumor grade with a multiplicative effect of 1.3 for those with
grade 2 compared to thosewith grade 1 tumors. Overall, the Pois-
son models yield smaller effects compared to the correspond-
ing NB models, possibly suggesting that failure to account for
overdispersion by the Poisson models leads to under-estimation
of the parameter estimates. It is also noted that the coefficients
of zero components are almost similar in HP and HNB (Table 3).
This is because the zero part is estimated completely separate
from the truncated part.

4. MODEL DIAGNOSTICS
We assessed the performance of our six models using informa-
tion criteria AIC, AICc and BIC as shown in Table 4 to deter-
mine the model with the best fit. The deviance, a measure of
goodness of fit based on the -2 log likelihood was also used to
evaluate model performance. The NB model and its variations
(zero-inflated and hurdle) consistently showed lower deviance,
AIC, AICs and BIC compared to the Poisson models. Notably,
Poisson model exhibited higher deviance values, indicating a rel-
atively poor fit. Among all the models, the ZINB model had
the lowest AIC and BIC suggesting it might be the best fitting
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Table 3. Output results for Zero-inflated and hurdle models.
Log Link (count)

Variable ZIP ZINB HP HNB
Intercept 1.452 1.383 1.454 1.407
SE 0.159 0.278 0.158 0.272
p-value <2e-16 6.19e-07 <2e-16 2.24e-07
Age (years)
Estimate 0.222 0.253 0.211 0.180
SE 0.252 0.438 0.250 0.424
p-value 0.378 0.563 0.399 0.672
Tumor Size (cm)
Estimate 0.444 0.489 0.444 0.488
SE 0.235 0.405 0.236 0.405
p-value 0.059 0.227 0.059 0.228
Tumor Grade 2
Estimate 0.248 0.258 0.248 0.264
SE 0.114 0.185 0.115 0.185
p-value 0.030 0.162 0.030 0.154
Tumor Grade 3
Estimate 0.085 0.064 0.085 0.067
SE 0.085 0.137 0.085 0.136
p-value 0.312 0.647 0.320 0.623
ER Positive
Estimate -0.028 -0.081 -0.019 -0.044
SE 0.149 0.256 0.148 0.247
p-value 0.852 0.751 0.897 0.857
PR Positive
Estimate 0.239 0.307 0.233 0.273
SE 0.134 0.234 0.133 0.226
p-value 0.074 0.188 0.079 0.228
HER2 Positive
Estimate -0.175 -0.185 -0.170 -0.176
SE 0.109 0.180 0.109 0.176
p-value 0.113 0.304 0.177 0.317

Zero Count
Intercept -2.446 -2.976 2.368 2.368
SE 0.759 0.980 0.768 0.737
p-value 0.001 0.002 0.000 0.001
Age (years)
Estimate 2.837 3.439 2.272 -2.728
SE 1.042 1.311 0.006 1.006
p-value 0.006 0.009 0.009 0.007
Tumor Size (cm)
Estimate 0.099 0.257 -0.065 -0.065
SE 1.181 1.396 1.169 1.169
p-value 0.933 0.843 0.960 0.956
Tumor Grade 2
Estimate 0.416 0.588 -0.379 -0.379
SE 0.564 0.686 0.550 0.550
p-value 0.465 0.416 0.490 0.490
Tumor Grade 3
Estimate -0.208 -0.239 0.215 0.215
SE 0.386 0.460 0.377 0.377
p-value 0.590 0.602 0.569 0.569
ER Positive
Estimate 0.183 0.064 -0.219 -0.219
SE 0.619 0.770 0.600 0.600
p-value 0.768 0.934 0.715 0.715
PR Positive
Estimate 0.118 0.324 -0.065 -0.065
SE 0.563 0.713 -0.120 0.542
p-value 0.835 0.649 0.904 0.905
HER2 Positive
Estimate 0.245 0.210 -0.269 -0.269
SE 0.444 0.515 0.434 0.434
p-value 0.581 0.684 0.535 0.535

model. Given the small differences between the ZINB and HNB
models and considering the goal of achieving stable and reliable
estimates through bootstrapping, both models were selected for

Table 4. Regression count model performance comparisons.
Distribution -2 Log Likelihood AIC AICC BIC
Poisson 898.21 915.26 916.39 938.55
NB 662.50 680.50 681.93 706.72
ZIP 674.20 706.15 710.72 752.75
ZINB 631.90 665.92 671.11 715.44
HNP 674.20 706.23 710.81 752.83
HNB 632.10 666.45 671.64 715.97

Table 5. Bootstrap results using HNB model.
Negative Binomial log link

Variable Original Bootstrap Bootstrap Bias C.I C.I
Est. Est. S.E Original Est. Bootstrap Est.

(Intercept) 1.407 1.381 0.318 -0.021 (0.874, 1.940) (0.765, 2.024)
Age 0.180 0.193 0.460 0.013 (-0.653, 1.012) (-0.743, 1.073)
Tumor Size 0.488 0.438 0.432 -0.051 (-0.309, 1.285) (-0.278, 1.428)
Tumor Grade 2 0.264 0.280 0.197 0.016 (-0.103, 0.630) (-0.049, 0.720)
Tumor Grade 3 0.067 0.065 0.146 -0.001 (-0.200, 0.333) (-0.253, 0.324)
ER Positive -0.044 -0.053 0.292 -0.008 (-0.530, 0.441) (-0.596, 0.567)
PR Positive 0.272 0.293 0.237 0.020 (-0.173, 0.719) (-0.197, 0.739)
HER2 Positive -0.176 -0.168 0.197 0.008 (-0.521, 0.169) (-0.576, 0.201)

Binomial Logit link
(Intercept) 2.367 2.788 1.411 0.420 (0.914, 3.822) (0.590, 4.260)
Age -2.727 -2.951 1.154 -0.223 (-4.707, -0.748) (-4.816, -0.351)
Tumor Size -0.064 -0.112 1.218 -0.047 (2.356, 2.227) (-2.479, 2.320)
Tumor Grade 2 -0.379 -0.925 2.459 -0.545 (-1.463, 0.705) (-1.675, 1.122)
Tumor Grade 3 0.214 0.527 1.438 0.313 (-0.532, 0.696) (-0.720, 1.252)
ER Positive -0.219 -0.202 0.710 0.015 (-1.394, 0.957) (-1.644, 1.192)
PR Positive -0.065 -0.092 0.635 -0.027 (-1.126, 0.997) (-1.395, 1.097)
HER2 Positive -0.269 -0.278 0.516 -0.009 (-1.126, 0.588) (-1.282, 0.759)

further analysis.
At this point, our focus is on finding the best fitting model

to our data between the ZINB and HNB models. Bootstrapping
was performed using the ZINB and HNB since both had almost
similar metrics (Table 4). The HNB model exhibited stability in
the bootstrap resampling analysis compared to the ZINB, and we
present results only for the HNB analysis in Table 5. The boot-
strap estimates, standard error, biases and confidence intervals
are presented. The bootstrap estimates for HNBmodel were con-
sistent with the original estimates, suggesting stable and reliable
results in both components of themodel. The bias for each coeffi-
cient also shows relatively small values, indicating the bootstrap
estimates are close with the original estimates. The confidence
intervals of a bootstrap distribution were calculated for each co-
efficient. These intervals are considered robust as they adjust for
both bias and skewness in the distribution of the bootstrap esti-
mates. This result can confirm the usefulness of the bootstrap
regression coefficients.

Since the HNB model demonstrated stability, results for this
study are interpreted from the original model. In the count part,
age has a positive effect of 0.180 indicating that an increase in age
might slightly increase the number of involved nodes, although
not statistically significant. Tumor size shows a positive associa-
tion, with a unit increase in size resulting in a 63% increase in the
expected nodal count (exp (0.488) =1.63). Higher tumor grades
(2 and 3) and PR positive status have positive effects on involved
axillary nodes in the count component of the HNB model. In
the zero-part, the coefficient for age of -2.279 indicates that each
additional unit increase in age decreases the odds of having a
zero count (no involved lymph nodes) by 2.279 times suggest-
ing that older patients are less likely to have zero counts com-
pared to younger patients. This result is statistically significant
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with a p-value of 0.007. Tumor size, moderately defined tumors,
ER and HER2neu positive status also have negative effects abeit
non-significance. Poorly differentiated tumor a positive effect on
nodal count. The HNB model based on parameter estimation is:

logit(p1) = 2.367 − 2.727 ∗ Age − 0.064 ∗ tumor .size
− 0.379 ∗ tumor .grade2 + 0.214 ∗ tumor .grade3 − 0.219 ∗ ER
− 0.065 ∗ PR − 0.269 ∗ HER2
log(µi) = 1.407 − 0.180 ∗ Age + 0.488 ∗ tumor .size
+ 0.264 ∗ tumor .grade2 + 0.067 ∗ tumor .grade3
− 0.044 ∗ ER + 0.272 ∗ PR − 0.176 ∗ HER2. (47)

5. DISCUSSION
Involved axillary lymph nodes are among the most important
prognostic factors in women diagnosed with breast cancer [43].
Understanding the factors associated with the number of nodes
involved is essential for directing treatment strategies, as these
factors play a pivotal role in predicting outcomes and guiding
therapeutic interventions. In this study, we compared various
count regression models to determine the best fitting model for
analyzing the count outcome variable, involved axillary lymph
nodes. To ensure the stability and reliability of our parameter
estimates, we integrated bootstrap resampling techniques. This
methodological approach enhances the validity of our findings,
ensuring that our conclusions are robust and less affected by sam-
ple variability.
We considered six different models involving either the Pois-

son or NB distributions for analyzing breast cancer nodal count
outcome data. The performance and stability of model coeffi-
cients were considered to determine the most appropriate model
for our data. A single parameter distribution Poisson model was
less suitable in our study data compared to two parameter dis-
tributions. The basic PRM yielded undesirable results due to
overdispersion prompting a comparison with the alternative NB,
ZINB and ZIP models. Although the NB evidently corrected the
large over dispersion in the nodal count data compared to PRM,
it remained an unsuitable choice due to challenges posed by the
zero inflated data. Inspection of the observed data as well as fit
statistics suggested that the distribution of the nodal count data
was both over-dispersed and zero-inflated. We then fit the zero-
inflated and hurdlemodels and the results showed that models us-
ing NB distributions fit better than the Poissonmodels. The Pois-
son models consistently produced smaller estimates compared to
NB models. These discrepancies can be attributed to the under-
lying assumptions of these models. Taken together, these sug-
gest the importance of accounting for both over-dispersion and
zero-inflation in modelling count data also illustrating the risk
of falsely identifying significant effects of variables if the model
chosen does not model the distribution of the data correctly.
The two-parameter distribution NB when integrated into a

two-part hurdle (HNB) and ZINB provided the best fit as ev-
idenced by having the lowest AIC, BIC and AICc. This dual
structure is particularly useful in clinical settings where a signif-
icant portion of portion may have no lymph node involvement,
yet amongst those with involvement, the count can vary widely.
Our findings are similar to the results presented by Liquat et al.
[16], Pavlicova et al. [20] and Andika et al. [44] where the zero-

augmented NB models performed better than zero-augmented
Poisson models. In contrast, a study by Fernandez et al. [45]
found that the PRM had the smallest AIC and BIC. However, in
their study, the simulated data that produced such results had very
low overdispersion (0.01), whereas in our study, the dispersion
parameter was 4.079.
The bootstrap resampling technique was applied to the best

fitting models HNB and ZINB models to evaluate the stability
of parameter estimates and select the most appropriate model
for the data. The bootstrap results for the ZINB showed un-
reasonable estimates with instability, very high standard errors
and substantial bias particularly in the zero-component. In con-
trast, the HNB model produced bootstrap estimates that closely
matched the original estimates, with minimal bias. The boot-
strap confidence intervals in the count component, and most in
the zero-component were almost similar to the original confi-
dence intervals, indicating stability of the HNB model. More-
over, the information criteria metrics suggested that relying on
single-time modeling could lead to incorrect model selection be-
tween HNB and ZINB. Both models may fail to detect under-
or overestimation when validated only once. Bootstrap resam-
pling validated the reliability, stability, and consistency of the
HNB model, underscoring its robustness in analyzing factors as-
sociated with axillary lymph node involvement. This finding
highlights the importance of selecting an appropriate model for
count outcome data to avoid biased parameter estimates, which
can result in either underestimation or overestimation of effects.
By integrating bootstrap resampling with advanced count regres-
sion models, this study addressed critical challenges in analyzing
small, over-dispersed datasets. Traditional applications of zero-
inflated and hurdle models often rely on large, balanced datasets,
which may not reflect the realities of resource-limited settings
like Zimbabwe. Incorporating bootstrap resampling ensures ro-
bust parameter estimates and reliable inferences, even in the pres-
ence of data limitations, thereby advancing statistical modeling
in resource-constrained contexts.
Given its superior performance in stability, reliability, and con-

sistency during bootstrap resampling, the HNB model was se-
lected as the basis for interpreting the relationships between co-
variates and the count of involved lymph nodes in breast cancer
patients. Bootstrap resampling further validated the precision of
these estimates, underscoring their robustness. Age was a sig-
nificant predictor in the zero-inflation component of the HNB
model, indicating that older patients are less likely to have ax-
illary lymph nodes affected. This significant negative associa-
tion suggests that older patients may develop breast cancers that
are less likely to spread to the lymph nodes, potentially due to
slower tumor progression or other age-related biological factors.
These findings align with existing literature emphasizing the role
of age-related changes in tumor biology on patterns of disease
progression [46–50]. The robustness of this association was sup-
ported by bootstrap resampling, which demonstrated narrower
confidence intervals for the age coefficient and consistent exclu-
sion of null values, confirming that this relationship is not due to
random variability. Interestingly, this study found no association
between age and positive nodal counts, a finding that contrasts
with studies by Sandoughdaran et al. [51] and Greer et al. [52],
which reported younger age associated with aggressive cancers



Saruchera et al. / Recent Advances in Natural Sciences 3 (2025) 137 11

and a higher risk of lymph node invasion. These discrepancies
may reflect differences in study populations, tumor subtypes, or
the statistical methods used. For instance, Sandoughdaran et al.
[51] and Greer et al. [52] focused on larger cohorts with distinct
demographic characteristics, which may have influenced their
results. Further research is needed to clarify these differences
and explore the mechanisms underlying age-related variations in
nodal involvement. These findings highlight the importance of
tailored screening and early detection programs. Even when the
likelihood of nodal involvement is low for older patients, age-
related factors influencing breast cancer progression warrant tar-
geted clinical strategies to ensure timely diagnosis and interven-
tion.

While the HNB model provided the best fit for the data, it
is noteworthy that tumor grade was significant, and tumor size
wasmarginally significant in the Zero-Inflated Poisson (ZIP) and
Hurdle Poisson (HP) models but not in the HNB model. These
discrepancies likely reflect differences in how the models handle
over-dispersion and excess zeros. Unlike ZIP and HP, the HNB
model accounts more effectively for over-dispersion and zero in-
flation, whichmay explain the lack of significance for tumor size.
This underscores the importance of selecting appropriate models
for analyzing count data in medical research, as model assump-
tions can influence the interpretation of results. Although tumor
size was not statistically significant in the HNB model, the posi-
tive estimate in the count component still indicates an increased
risk of lymph node involvement with larger tumor size. This
aligns with findings from previous studies [53, 54]. However,
the consistent lack of significance in the zero component across
all models suggests that tumor size primarily affects the extent
of positive nodal involvement rather than the probability of zero
involvement.

Contrary to our findings, Swain et al. [14] reported tumor size
as a significant predictor of lymph node involvement. Similarly,
Shima et al. [24] found significant associations between metas-
tasis status, HER2-positive status, higher tumor grade, and in-
creased risk of involved lymph nodes using the ZINB model in
an Iranian population. These discrepancies highlight the impor-
tance of considering region-specificmodels, as variations in sam-
ple size, demographic, and clinical characteristics across studies
can lead to differences in significance levels. Our study popula-
tion, consisting of breast cancer patients from a resource-limited
setting in Zimbabwe, likely has unique demographic and clinical
profiles compared to other populations. Additionally, inherent
delays in diagnostic processes within this setting may have in-
fluenced our findings, further underscoring the need for context-
specific analyses.

Unlike studies that relied on binary classification to assess
nodal status, such as that by Elleson et al. [55], Jiang et al. [56]
and Zhang et al. [29], which may oversimplify the heterogene-
ity in medical data, this study utilized zero-inflated and hurdle
count models. These models offered a more nuanced perspec-
tive by not only analyzing the count of involved lymph nodes
but also explaining the probability of zero nodal involvement.
The zero-inflation component of the HNB model provided criti-
cal insights into factors influencing the likelihood of zero nodal
involvement, a perspective often overlooked in simpler analyses.
These flexiblemodels can support clinicians inmaking informed,

data-driven decisions about targeted treatments for breast cancer
patients, particularly in resource-constrained settings.

However, our study had some limitations. We used a cross
sectional study dataset with limited data on vital characteristics
and the use of secondary data introduced the possibility of hu-
man capturing errors. The hospital where the data was extracted
is a national referral hospital in Zimbabwe. This means we were
dealing with a select population hence the results in our analy-
sis may only be applicable to referrals and not for the general
population.

6. CONCLUSION
Traditional models like Poisson and NB were initially consid-
ered but proved inadequate due to overdispersion and excess zero
counts. Zero-inflated and hurdlemodels, specifically designed to
handle these complexities were explored, with the HNB model
emerging as the most reliable based on both model fit and boot-
strap resampling, which addressed instability observed in the
ZINB model. This study highlights the importance of select-
ing appropriate models for count data in medical research and
demonstrates the utility of bootstrap resampling for enhancing
the reliability of estimates in small, variable datasets. By ad-
dressing the challenges posed by small sample sizes and com-
plex data structures, this approach contributes to more reliable
and actionable insights in medical research.

To translate these findings into practice, we recommend in-
tegrating bootstrap resampling into count regression modeling
to improve the accuracy of clinical factor estimates. This ap-
proach can support treatment planning, policy evaluation, and
resource allocation, ultimately improving patient care. Age was
identified as a significant predictor of zero nodal involvement,
underscoring the need for health policies that prioritize early de-
tection programs, particularly for younger patients, alongside
improved access to screening and diagnostic services. Accu-
rate tumor characterization remains a critical determinant of dis-
ease progression. Patients with higher tumor sizes may ben-
efit from personalized treatment plans and close follow-up to
optimize outcomes. Community education campaigns are vi-
tal to raise awareness about breast cancer symptoms, promote
regular screening, and emphasize the importance of timely treat-
ment. Collaboration between healthcare providers, researchers,
and policymakers is essential to address breast cancer challenges.
Further studies should validate these findings and explore addi-
tional factors influencing nodal involvement. By implementing
these recommendations, healthcare systems in resource-limited
settings can improve breast cancer outcomes and ensure equi-
table care for affected patients. This study provides a foundation
for future research and policy initiatives aimed at reducing the
burden of breast cancer and enhancing the quality of care for pa-
tients globally.
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