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A B S T R A C T

This paper is aimed at finding the accuracy and performance of the second derivative
block extended trapezoidal rule of the second kind blended with generalized backward
differentiation formulae with variable step sizes for solving hyperchaotic initial value
problems. Hyperchaotic systems are characterized by fast changing solutions that are
sensitive to changes in the initial condition. Most of the existing numerical methods
solve hyperchaotic systems by linearizing the systems before solving them, also solving
in a sequence of multiple sub-intervals and later joining the resulting solutions at the
end of the interval. These can introduce errors in the solutions because of the many
sub-intervals. The second derivative block extended trapezoidal rule of the second
kind blended with generalized backward differentiation formulae is a highly accurate
method that can solve hyperchaotic systems without having to subdivide the interval of
integration and can solve the system directly without linearization. The derivation of
the continuous formulations of the method is carried out through a multistep inversion
technique by blending two linear multistep methods. The discrete schemes were deduced
from their respective continuous interpolants. The convergence analyses of these discrete
schemes were discussed. The proposed block methods are found to be efficient and
accurate, making them suitable for solving hyperchaotic and other nonlinear ordinary
differential equations.
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1. INTRODUCTION
Hyperchaotic systems are chaotic systems that have complex
nonlinear dynamics which are also sensitive to initial conditions.
Lyapunov exponent measures the rate of divergence or conver-
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gence along one axe in the phase space. A positive Lyapunov
exponent indicates chaotic system. A hyperchaotic system is a
chaotic system with at least two positive Lyapunov exponents.
Rosseler was the first to introduce hyperchaotic ordinary differ-
ential equations (ODEs) in his work on chemical reactions Ref.
[1]. Since then, there have been many new hyperchaotic sys-
tems, like the Qi system, the Chen system, the Chua system, and
so on. Hyperchaotic systems have a complex nonlinear nature;
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they have high capacity, security, and efficiency, and they have
applications in several areas, including electronic oscillators, en-
cryption, and secure communication. The most commonly used
method for solving hyperchaotic systems is analytical methods
Refs. [2, 3], which involve linearization of the differential equa-
tions with slow convergence. Also, the semi-analytical method
involves splitting large intervals into smaller sub-intervals, solv-
ing hyperchaotic systems on a sequence of intervals and joining
the resulting solutions at the end of the interval. This form intro-
duces errors and is time-consuming because of the many smaller
intervals. Furthermore, Refs. [4, 5] used the semi-analytical
methods, which are based on the spectral method, to solve hyper-
chaotic systems. This paper is concerned with constructing sec-
ond derivative block extended trapezoidal rule of the second kind
blended with the backward differentiation formulae with better
accuracy and stability properties. Consider hyperchaotic system
of the initial value problem, defined as:

y′(x) = f (x, y(x)), y(x0) = y0, (1)

on the interval I = [x0, xN ], where y : [x0, xN ] → ℜm and
f : [x0, xN ] → ℜm × ℜm is continuous, and differentiable.
This research is concerned with finding the numerical solutions
of equation (1) using second derivative methods. The first sec-
tion has the introduction, and the second section is the deriva-
tion techniques. The third section includes the convergence and
stability analysis of the methods, while the last section tests the
robustness of these new methods by solving some real-life hy-
perchaotic ODEs.

1.1. THEOREM (EXISTENCE AND UNIQUENESS OF
SOLUTIONS)

Let f(x, y) be defined and continuous for all points (x, y) in an
open region of two-dimensional real Euclidean space D, defined
by a ≤ x ≤ b,−∞<y<∞,a and b finite, and let there exist a
constant L such that, for every (x, y) and(x, y∗) are both in D,
|f (x, y) − f (x, y∗)| ≤ L |y − y ∗ |. Then, if y0 is any given number,
there exist a unique solution y(x) of the IVP Eq. (1), where y(x)
is continuous and differentiable for all (x, y) in D.

2. DERIVATION TECHNIQUES
2.1. THE SECOND DERIVATIVE MULTISTEP COLLOCATION

METHOD
The method carried described in Ref. [6], will be used in this
derivation, to construct a k-step second derivative multistep col-
location method as:

y(x) =
t−1∑
j=0

αj(x)yn+j + hn
m−1∑
j=0

βj(x)fn+j + h2
n

m−1∑
j=0

λj(x)y′′n+j, (2)

where hn is the variable step size, αj(x), βj(x),and λj(x)are the
continuous coefficients of the method defined as;

αj(x) =
t+m−1∑
i=0

αj,i+1x i, j ∈ {0, ..., t − 1}

βj(x) =
t+m−1∑
i=0

βj,i+1x i, j ∈ {0, ...,m − 1}

Table 1. Comparison between SDETR2s blended with GBDF k = 3, 5 and
MSRM using Problem 1 with h=10−1 to 10−5.

t SDETR2s with
GBDF k= 3

SDETR2s with
GBDF k= 5

MSRM

y1(t)
2 -2.91138 -2.91138 -2.91138
4 -3.63001 -3.63001 -3.63001
6 2.80571 2.80571 2.80571
8 0.01134 0.01134 0.01134
10 -0.80219 -0.80219 -0.80219

y2(t)
2 21.73155 21.73155 21.73155
4 6.52144 6.52144 6.52144
6 -2.77638 -2.77638 -2.77638
8 2.09585 2.09585 2.09585
10 16.48559 16.48559 16.48559

y3(t)
2 -3.24491 -3.24491 -3.24491
4 -6.30881 -6.30881 -6.30881
6 -2.37099 -2.37099 -2.37099
8 -0.14880 -0.14880 -0.14880
10 -0.06690 -0.06690 -0.06690

y4(t)
2 23.96851 23.96851 23.96851
4 11.30830 11.30830 11.30830
6 4.65208 4.65208 4.65208
8 -4.99685 -4.99685 -4.99685
10 1.98179 1.98179 1.98179

y5(t)
2 44.32071 44.32071 44.32071
4 14.68007 14.68007 14.68007
6 39.34559 39.34559 39.34559
8 33.79560 33.79560 33.79560
10 50.59739 50.59739 50.59739

y6(t)
2 26.54682 26.54682 26.54682
4 3.25221 3.25221 3.25221
6 12.99055 12.99055 12.99055
8 8.02232 8.02232 8.02232
10 24.48234 24.48234 24.48234

λj(x) =
t+m−1∑
i=0

λj,i+1x i, j ∈ {0, ...,m − 1}. (3)

To determine the continuous coefficients αj(x), βj(x), and λj(x)
the following conditions are imposed:

αj (xn+1) = δij, j = 0, ..., t − 1; i = 0, ..., t − 1

hnβj (xn+1) = 0, j = 0, ...,m − 1; i = 0, ..., t − 1

h2
nλj (xn+1) = 0, j = 0, ...,m − 1; i = 0, 1, ..., t − 1,

(4)
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Table 2. Comparison between SDETR2s blended with GBDF k=5 and
MSRM using Problem 2 with h=10−1 to 10−5.

t SDETR2s with
GBDF k= 3

SDETR2s with
GBDF k= 5

MSRM

y1(t)
3 -3.85711 -3.85711 -3.85711
10 -0.33729 -0.33729 -0.33729
17 0.12630 0.12630 0.12630
24 0.05091 0.05091 0.05091
31 -2.55034 -2.55034 -2.55034
38 -3.93154 -3.93154 -3.93154

y2(t)
3 -5.66683 -5.66683 -5.66683
10 -0.49554 -0.49554 -0.49554
17 0.18555 0.18555 0.18555
24 0.07480 0.07480 0.07480
31 -3.74694 -3.74694 -3.74694
38 -5.77619 -5.77619 -5.77619

y3(t)
3 -5.20445 -5.20445 -5.20445
10 -0.49104 -0.49104 -0.49104
17 0.15550 0.15550 0.15550
24 0.19500 0.19500 0.19500
31 -0.79819 -0.79819 -0.79819
38 -5.33693 -5.33693 -5.33693

y4(t)
3 -7.64635 -7.64635 -7.64635
10 -0.72144 -0.72144 -0.72144
17 0.22846 0.22846 0.22846
24 0.28649 0.28649 0.28649
31 -1.17270 -1.17270 -1.17270
38 -7.84098 -7.84098 -7.84098

y5(t)
3 15.05932 15.05932 15.05932
10 10.73663 10.73663 10.73663
17 14.25582 14.25582 14.25582
24 19.33844 19.33844 19.33844
31 25.34856 25.34856 25.34856
38 14.98250 14.98250 14.98250

α
′

j (x i) = 0, j = 0, ..., t − 1; i = 0, ...,m − 1

hnβ
′

j (x i) = δij, j = 0, ...,m − 1; i = 0, ...,m − 1

h2
nλ
′

j (x i) = 0, j = 0, ...,m − 1; i = 0, 1, ...,m − 1,

(5)

and

α
′′

j (x i) = 0, j = 0, ..., t − 1; i = 0, ...,m − 1

hnβ
′′

j (x i) = 0, j = 0, ...,m − 1; i = 0, ...,m − 1

h2
nλ
′′

j (x i) = δij, j = 0, ...,m − 1; i = 0, 1, ...,m − 1,

(6)

where x j, j = 0, 1, . . . , m-1 are the m distinct collocation points
used and t , 0<t ≤ k the number of interpolation points and equa-
tion (4) – (5) can be written in matrix form as:

DC = 1, (7)

where I is the identity matrix of dimension (t +m)×(t +m) while
D and Care matrices defined as:

D =



1 xn x2
n ... x t+m−1

n
1 xn+1 x2

n+1 ... x t+m−1
n+1

...
...

... ...
...

1 xn+t−1 x2
n+t−1 ... x t+m−1

n+t−1
0 1 2x0 ... (t + m − 1)x t+m−2

0
...

...
... ...

...

0 1 2xm−1 ... (t + m − 1)x t+m−2
m−1

0 0 2 ... (t + m − 2)(t + m − 1)x t+m−3
0

...
...

... ...
...

0 0 2 ... (t + m − 2)(t + m − 1)x t+m−3
m−1 ,


(8)

C =


α0,1 α1,1 ... αt−1,1 hnβ0,1 ... hnβm−1,1 h2

nλ0,1 ... h2
nλm−1,1

α0,2 α1,2 ... αt−1,2 hnβ0,2 ... hnβm−1,2 h2
nλ0,2 ... h2

nλm−1,2
...

... ...
...

... ...
...

... ...
...

α0,t+m α1,t+m ... αt−1,t+m hnβ0,t+m ... hnβm−1,t+m h2
nλm−1,t+m ... h2

nλm−1,t+m.

 (9)

It follows from equation (7) the columns of C = D−1, give the
elements of the continuous coefficients αj(x), βj(x), and λj(x) of
the continuous scheme (Equation 3).

2.2. DERIVATION OF CONTINUOUS SECOND DERIVATIVE
CONVENTIONAL FORMS OF EXTENDED TRAPEZOIDAL
RULES OF THE SECOND KIND BLENDED WITH
GENERALIZED BACKWARD DIFFERENTIATION
FORMULAE (SDETR2S BLENDED WITH GBDF) FOR K = 3
AND 5

As defined in Refs. [6, 7], a second derivative ETR2s blended
with GBDF is defined as:

y (x) =
k−1∑
j=0

αj(x)yn+j+hn[βv (x) f n+v−1+βv (x) fn+v]+h2
nλu(x)gn+u,

(10)
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Table 3. Comparison between SDETR2s blended with GBDF k=3, 5 with
h = 10−1to10−5and ODE 45 using Problem 3.

t SDETR2s with
GBDF k= 3

SDETR2s with
GBDF k= 5

ODE 45

y1(t)
2 -5.746066 -5.746066 -

5.746695
4 0.704068 0.704068 0.703867
6 4.772807 4.772807 4.772186
8 -1.656413 -1.656413 -

1.656500
10 1.421949 1.421949 1.421949

y2(t)
2 -0.686392 -0.686392 -

0.686321
4 0.251313 0.251313 0.251329
6 1.608418 1.608418 1.608104
8 -0.273639 -0.273639 -

0.273534
10 0.817538 0.817538 0.817270

y3(t)
2 4.752034 4.752034 4.752228
4 4.091915 4.091915 4.092114
6 3.071328 3.071328 3.071401
8 4.143334 4.143334 4.143532
10 2.578950 2.578950 2.579065

y4(t)
2 0.586958 0.586958 0.586801
4 -5.1664589 -5.1664589 -

5.166404
6 -16.184737 -16.184737 -

16.184383
8 -3.211817 -3.211817 -

3.211877
10 8.694178 8.694178 8.694357

where,

v =
[[
k + 1

2

]]
, and [[]] , (11)

is the greatest integer function.
CASE k =3: Letting v = u = 2 and equation (10) becomes;

y(x) = α0(x)yn + α1(x)yn+1+

hn[β1(x)fn+1 + β2(x)fn+2] + h2
nλ2(x)gn+2. (12)

Computing the inverse of the D matrix obtained from equation
(12) using Maple 18 and from equation 4 to 6 we obtain the con-
tinuous coefficients with η = (x− xn) as follows:

α0(η+xn) =
1

8h4
n

[η4−7hnη3+18h2
nη

2 −20h3
nη +8h4

n]

α1(η+xn) =
1
h4
n

[−η4+6hnη3 −12h2
nη

2 +8h3
nη −8 h4

n]

Figure 1. The region of absolute stability of the methods in Eq. (14) and
Eq. (16).

β1(η+xn) =
1

4h4
n

[7η4−41hnη3 +78h2
nη

2 −44h3
nη −44h4

n]

β2(η+xn) =
1

4h3
n

[−3η4+17η3−30hnη2 +16h2
nη −16h3

n] . (13)

The continuous scheme is evaluated at η = 3hn and its first deriva-
tive at η = (0, 3hn) to have the following three discrete schemes.

yn+1 =
5

28
h2
ngn+2 −

1
56
hnfn+3 −

9
14
hnfn+2−

23
56
hnfn+1 +

29
28
yn+2 −

1
28
yn

yn+2 = −
2
23
h2
ngn+2 +

12
23
hnfn+2 +

16
23
hnfn+1+

2
23
hnfn +

16
23
yn+1 +

7
23
yn

yn+3 = 3h2
ngn+2−9hnfn+2−6hnfn+1+

33
2
hnfn+1+

29
28
yn+2−

1
28
yn.

(14)

CASE k = 5: Letting, v = u = 3 and equation (10) becomes:

y(x) = α0(x)yn + α1(x)yn+1+

α2(x)yn+2 + hn[β2(x)fn+2 + β3(x)fn+3] + h2
nλ3(x)gn+3. (15)

In the same way, the continuous scheme is evaluated at η = 5hn
and its first derivative at η = (0, hn, 3hn, 5hn) to have the following
five discrete schemes.

yn+1 =
6

17
h2
ngn+3 −

36
17
hnfn+4 −

28
17
hnfn+3−

6
17
hnfn+1 −

1
17
yn+4 +

163
51

yn+3 −
36
17
yn+2 −

1
51
yn,
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Figure 2.Comparison of the phase space between the SDETR2s blended
with GBDF for k=3 with h = 10−1 to 10−5 and ODE 45 for Problem 1.

yn+2 =
187
906

h2
ngn+3 +

1
906

h2
ngn+2 −

793
1359

hnfn+3 −
197
453

hnfn+2−

157
1812

yn+4 +
18589
16308

yn+3 −
101

1812
yn+1 +

41
16308

yn,

yn+3 = −
6

49
h2
ngn+3 +

26
49
hnfn+4 +

27
49
hnfn+3−

1
98
hnfn +

9
392

yn+4 +
81
98
yn+2 +

9
49
yn+1 −

13
392

yn,

yn+4 =
48
55
h2
ngn+3 +

12
55
hnfn+4 −

16
11
hnfn+3−

72
55
hnfn+2 +

728
165

yn+3 −
36
11
yn+2 −

8
55
yn+1 −

1
165

yn,

yn+5 = −60h2
ngn+3 + 160hnfn+3 + 120hnfn+2 + 30yn+4−

970
3
yn+3 + 280yn+2 − 15yn+1 −

2
3
yn. (16)

3. CONVERGENCE ANALYSIS
In this section, the order, error constants, consistency and zero
stability of the derived discrete schemes will be analyzed.

3.1. ORDER AND ERROR CONSTANT
The order and error constant of the discrete schemes in equa-
tion(14) and (16) are obtained or carried out in block form. Fol-
lowing Ref. [8] and Ref. [9], the local truncation error associated

with the k-step second derivative multistep method (Equation 2)
is the linear difference operator L defined as:

L[y(x) : h] =
k=0∑
i=0

{αjy(x + jhn)−

hnβjy′(x + jhn) − h2
nβjy

′(x + jhn)}, (17)

where y(x) is an arbitrary function, continuously differentiable
on [a, b]. Expanding y(x + jhn) and its derivative y′(x + jhn) as
Taylor series about x, and collecting terms in equation (17) give;

L[y(x) : hn] = C0Z (x)+C1hnZ 1(x)+...+CqhnZ q(x)+...,(18)

where the constant Cq, q=0, 1, . . . are given as:

C0 =
∑k
j=0 αj

C1 =
∑k
j=0 jαj −

∑k
j=0 βj

C2 =
1
2

∑k
j=0 jαj −

∑k
j=0 jβj −

∑k
j=0 λj

...

Cq =
1
q

∑k
j=0 j

qαj −
1

(q−1)!

∑k
j=0 j

q−1βj −
1

(q−2)!

∑k
j=0 j

q−2λj, q = 3, 4, ...
...

(19)

The method in equation (14) expressed in the form of equation
(17) produces the values of the continuous coefficients of the
method as:

α0 =

(
1
28
,−

7
23
,

1
2

)
, α1 =

(
1,−

16
23
, 15

)
, α2 =

(
−

29
28
, 1,−

33
2

)
,

α3 = (0, 0, 1) , β0 =

(
0,

2
23
, 0

)
, β1 =

(
−

23
56
,

16
23
,−6

)
,

β2 =

(
−

9
14
,

12
23
,−9

)
, β3 =

(
−

1
56
, 0, 0

)
, λ2 =

(
5

28
,−

2
23
, 3

)
.

(20)

Substituting these values of the continuous coefficients in equa-
tion (20) into equation (19), we have:
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C0 = α0 + α1 + α2 + α3 =

 0
0
0


C2 =

1
2 (α0 + α1 + α2 + α3) − (β0 + β1 + β2 + β3) =

 0
0
0


C1 = (α0 + α1 + 2α2 + 3α3) − (β0 + β1 + β2 + β3) =

 0
0
0


C3 =

1
6 (α1 + 23α2 + 33α3)−

1
2 (β1 + 22β2 + 32β3) − (λ) =

 0
0
0


C3 =

1
6 (α1 + 23α2 + 33α3)−

1
2 (β1 + 22β2 + 32β3) − (λ2) =

 0
0
0


C4 =

1
24 (α1 + 24α2 + 34α3) − 1

6 (β1 + 23β2 + 33β3)−

1
2 (22λ2) =

 0
0
0


C5 =

1
120 (α1 + 25α2 + 35α3) − 1

24 (β1 + 24β2 + 34β3)−

1
6 (23λ2) =

 0
0
0


C6 =

1
720 (α1 + 26α2 + 36α3)−

1
120 (β1 + 25β2 + 35β3) − 1

24 (24λ2) =


13

10080
1

1035
1

60

 ,
(21)

solving gives equation (21) C0 = C1 = C2 = C3 = C4 = C4 =

0 but C6 , 0 that is Cp+2 , 0 which is the error constant of
the method and Cp+2hp+2yp+2(xn) is the principal local truncation
error at the point xn. Thus the local truncation error (LTE) of the
method is written as:

LTE = Cp+2hp+2yp+2(xn) + O(hp+3). (22)

Using equation (17) – (20), method equation (14) is of uni-
form order [5, 5, 5] T and with the following error constant[

13
10080 ,

1
1035 ,

1
60

]T
. Similarly, the order and error constant of the

blockmethod equation (16) is carried out following the same pro-
ducer as in case k=3. Therefore, equation (16) is of order p = 7

and error constant
[

1
4760 ,−

31
217440 ,−

3
27440 ,−

1
3850 ,

1
28

]T
.

3.2. CONSISTENCY
All the methods in equation (14) and (16) have their orders
greater than one, so as in Ref. [10], the methods are consistent.

3.3. ZERO STABILITY
The zero stability of the discrete schemes in Eq. (14) is deter-
mined in block forms using the approach in Ref. [9]. Themethod
Eq. (14) is represented as a single block r-point multistep method
of the form:

θ(1)Yu+1 = θ
(0)Yu + huδ(1)Fu + h2

uτ
(1)Gu,

where,

Yu+1 = (yn+1, yn+2, yn+3)T ,

Yu = (yn−3, yn−2, yn−1)T ,

Fu+1 = (fn+1, fn+2, fn+3)T ,

Gu+1 = (gn+1, gn+2, gn+3)T ,

(23)

for u=0, . . . and n=0, 1, 2, 3, . . . , N-3, and the matrices
θ(1), δ(1), τ(1) are 3 by 3 matrices whose entries are given by the
coefficients of Eq. (16).

3.4. DEFINITION (ZERO STABILITY)
A block LMM is said to be zero stable provided the roots Ri,j, i,
j=1,...,k of the first characteristic polynomial ρ (R):

ρ(R) = det

 k∑
j=0

A(j)Rk−1

 = 0, (24)

satisfy |R| ≤ 1, and for those roots with |R| = 1, the multiplicity
does not exceed two.
The block method Eq. (14) written in the form of Eq. (24)

gives the characteristic polynomial of the method as:

ρ(R) = (R2 − R)R = (R3 − R2)
R(R2 − R) = 0,

which implies,

R1 = 1,R2 = R3 = 0.

Therefore, the block method in Eq. (14) in Eq. (24) and hence is
zero stable in Ref. [10]. Following the procedure as in Eq. (14),
we determined the zero stability of the block method Eq. (16).
Also, is zero-stable in Ref. [10].

3.5. CONVERGENCE ANALYSIS
The block methods Eq. (14) and Eq. (16) are all convergent in
Ref. [10], since they are both consistent and zero-stable.

3.6. STABILITY ANALYSIS
In this section, the stability of the derived methods in Eq. (14)
and Eq. (16) are investigated as:

∣∣∣∣∣∣∣∣
1 − 29

28 0
− 16

23 1 0
15 − 33

2 1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
yn+1
yn+2
yn+3

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

0 0 − 1
28

0 0 7
23

0 0 − 1
2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
yn−2
yn−1
yn

∣∣∣∣∣∣∣∣+
h

∣∣∣∣∣∣∣∣
− 23

56 − 9
14 − 1

56
− 16

23
12
23 0

−6 −9 0

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
fn+1
fn+2
fn+3

∣∣∣∣∣∣∣∣ + h
∣∣∣∣∣∣∣∣

0 0 0
0 0 2

23
0 0 0

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
fn−2
fn−1
fn

∣∣∣∣∣∣∣∣+
h2
n

∣∣∣∣∣∣∣∣
0 5

28 0
0 − 2

23 0
0 3 0

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
gn+1
gn+2
gn+3

∣∣∣∣∣∣∣∣ + h2
n

∣∣∣∣∣∣∣∣
0 0 0
0 0 0
0 0 0

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
gn−2
gn−1
gn

∣∣∣∣∣∣∣∣ ,
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Figure 3.Comparison of phase portraits for problem 1 between SDETR2s
blended with GBDF for k=3 with h = 10−1to10−5and ODE 45.

where,

Ψ =

∣∣∣∣∣∣∣∣
1 − 29

28 0
− 16

23 1 0
15 − 33

2 1

∣∣∣∣∣∣∣∣ ,
Φ =

∣∣∣∣∣∣∣∣
0 0 − 1

28
0 0 7

23
0 0 − 1

2

∣∣∣∣∣∣∣∣ ,
Σ =

∣∣∣∣∣∣∣∣
− 23

56 − 9
14 − 1

56
− 16

23
12
23 0

−6 −9 0

∣∣∣∣∣∣∣∣ ,
Ω =

∣∣∣∣∣∣∣∣
0 0 0
0 0 2

23
0 0 0

∣∣∣∣∣∣∣∣ ,
Γ =

∣∣∣∣∣∣∣∣
0 5

28 0
0 − 2

23 0
0 3 0

∣∣∣∣∣∣∣∣ ,
Π =

∣∣∣∣∣∣∣∣
0 0 0
0 0 0
0 0 0

∣∣∣∣∣∣∣∣

.

The elements of the matrices Ψ,Φ,Σ,Γ,Ω,Π, are substituted
into the characteristic equation of Eq. (25) in Maple Software.

N(γ) = det
∣∣∣γ(Ψ − Σχ − Γχ2) − Φ −Ωχ − Πχ2

∣∣∣ = 0, (25)

det

 γ(1 + 23
56χ) γ(− 29

28 +
9
14χ −

5
28χ

2) 1
56γχ +

1
28

γ(− 16
23 −

16
23χ) γ(1 − 12

23χ +
2

23χ
2) − 7

23 −
2

23χ

γ(15 + 6χ) γ(− 33
2 + 9χ − 3χ2) γ + 1

2χ

 = 0.

Solving, we obtain the stability polynomial,

N(γ) = − 45
161γ

2 − 9
23γ

2χ − 153
644γ

2χ2 − 51
644γ

3χ2 − 72
161γ

3χ+

9
28γ

3χ2 − 9
644γ

4χ4 + 9
322γ

3χ4 + 45
161γ

3. (26)

Differentiating Eq. (26) with respect to χ we obtain the deriva-
tive as:

N(γ) = − 9
23γ

2 − 153
322γ

2χ − 153
644γ

2χ2 − 72
161γ

3 + 9
14γ

3χ − 9
23

γ3χ2 − 9
161γ

2χ3 + 18
161γ

3χ3. (27)

Figure 4. Comparison of phase space between the SDETR2s blended
with GBDF blue line withh = 10−1to10−5and ODE 45 black line for
Problem 2.

Figure 5.Comparison of phase portraits for problem 2 between SDETR2s
blended with GBDF for k=5 blue line with h = 10−1to10−5and ODE 45
black line.

Then, Eq. (27) is substituted into MATLAB code to plot the re-
gions of absolute stability for methods Eq. (14) and Eq. (16) are
shown in Figure 1.

4. IMPLEMENTATION
4.1. NUMERICAL EXAMPLES
In this section, some real-life problems with complex hyper-
chaotic behaviours are solved numerically using our new meth-
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Figure 6. Comparison of phase space of Problem 3 between SDETR2s
blended with GBDF for k=3Magenta line and h = 10−1to10−5 and ODE
45 black line.

ods and results compared with those obtained from existing
method in literature and the Matlab ODEs solvers. We consid-
ered the following problems in Refs. [11–13].

4.1.1. Example 1: Hyperchaotic Lorenz system

The hyperchaotic complex Lorenz system was derived in Ref.
[11] whenmodeling two-dimensional fluid cell between two par-
allel plates at different temperatures.

y
′

1 = a(y3 − y1)
y
′

2 = a(y4 − y2) + y6

y
′

3 = by1 − y3 − y1y5

y
′

4 = by2 − y4 − y2y5 + y6

y
′

5 = −y1y3 + y2y4 − cy5

y
′

6 = y1y3 + y2y4 − dy6,

where, a=15, b=36, c=4.5, d=12, y1(0)=12, y2(0)=10, y3(0)=2,
y4(0)=7, y5(0)=9, y6(0)=10, for t ∈ [0, 10] and h=10−1 to 10−5.

4.1.2. Example 2: Hyperchaotic Permanent Magnet
Synchronous

State equations of hyperchaotic permanent magnet synchronous
motor system in a field-oriented motor can be described by the
following system in Ref. [12]:

y
′

1 = a(y3 − y1)
y
′

2 = a(y4 − y2)
y
′

3 = by1 − y3 − y1y5

y
′

4 = by2 − y4 − y2y5

y
′

5 = y1y3 + y2y4 − y5,

where, a=11, b=20, y1(0)=1,y2(0)=2, y3(0)=3, y4(0)=4, y2(0)=5
for t∈ [0, 40] and h=10−1 to 10−5.

Figure 7.Comparison of phase portraits of Problem 3 between SDETR2s
blended with GBDF for k=5 with h = 10−1to10−5and ODE 45.

4.1.3. Example 3: Hyperchaotic Qi system
We consider the hyperchaotic Qi dynamics in Ref. [13] described
by:

y
′

1 = a(y2 − y1) + ψy2y3

y
′

2 = cy1 − dy1y3 + y2 + y4

y
′

3 = y1y2 − by3

y
′

4 = −φy2,

where, a=35, b=4.9, c=25, d=5, ψ=35, φ=22, y1(0)=10, y2(0)=4,
y3(0)=8, y4(0)=12, for t ∈ [0, 10] and h=10−1 to 10−5.

4.2. RESULTS
4.3. RESULTS AND DISCUSSIONS
In this section, we present the results for the regions plotted and
numerical results of our new methods SDETR2s with GBDF for
k = 3 and 5, to solve three hyperchaotic problems. From Figure
1, the regions are all A-stable, hence, the methods are suitable for
solving hyperchaotic ODEs. The value of h was varied between
0.1 and 0.00001 in Ref. [10] and 0.1 and 0.0001 in Refs. [11, 13].
The accuracy level used in this work is six decimal places. The
results of our newly derived method are compared with existing
method in literature and MATLAB in-built solvers for IVPs of
ODEs; in particular, the routine ODE 45 was used. By existence
and uniqueness theorem 1, trajectories cannot merge or cross,
the strange attractors are all unique. The entire phase space and
phase portrait are in agreement with each other.

5. CONCLUSION
In this work, we have constructed SDETR2s blended with GBDF
for k = 3 and k = 5 with variable step size for solving nonlin-
ear IVPs of ODEs with hyperchaotic properties. The methods
derived are convergent and A-stable. The new block methods
are self-starting, hence eliminating the use of starting values.
From the result of the numerical simulations carried out in Refs.
[10, 12, 13], the methods are efficient and attractive for solving
hyperchaotic, other nonlinear and linear ODEs as displaced by
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numerical results in the tables, time series and phase portrait so-
lution curves compared with MATLAB ODEs in-built in solver.
The step size was varied to overcome the claim in Ref. [14].

Table 1 presents a comparison between the SDETR2s with
GBDF and the MSRM for Problem 1 at selected values of time
points (t). Figures 2 and 3 display the corresponding time se-
ries (phase space) graphs and phase portraits, which demonstrate
a strong agreement between the SDETR2s with GBDF for k=3
and ODE 45.

Table 2 compares the numerical results of our new method
with those of ODE 45 for the problem 2, revealing good agree-
ment between the two methods as time (t) progresses. Figure 4
compares the SDETR2s with GBDF for k=3 andODE 45 time se-
ries for Problem 2, exhibiting good agreement. Figure 5 displays
the corresponding phase portraits, which demonstrate identical
results from numerical simulations using our new method and
the ODE solver.

Table 3 presents a comparison between the results of our new
method and ODE 45 for all the dependent variables of the Qi-
system at selected time values (t). The good agreement between
the SDETR2s with GBDF and ODE 45 solver results, as seen
in Figures 6 and 7, confirms the validity of the proposed new
scheme approach for solving nonlinear and hyperchaotic sys-
tems. The time series plots and phase portraits for the Qi-system
shown in these Figure demonstrate the accuracy of the SDETR2s
with GBDF for k=3 and ODE 45 method compared to other
methods.
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