Di-layers satellite electronic shielding system (DiLSES): fabrication and characterization

Authors

  • Emmanuel Ochoyo Adamu Department of Physics, Faculty of Sciences, Federal University of Lafia, P. M. B 146, Lafia, Nasarawa State, Nigeria
  • Abubakar Sadiq Aliyu Department of Physics, Faculty of Sciences, Federal University of Lafia, P. M. B 146, Lafia, Nasarawa State, Nigeria
  • Abdulkarim Muhammad Hamza Department of Physics, Faculty of Sciences, Federal University of Lafia, P. M. B 146, Lafia, Nasarawa State, Nigeria
  • Muhammad Sani Department of Physics, Faculty of Sciences, Federal University of Lafia, P. M. B 146, Lafia, Nasarawa State, Nigeria
  • Umar Sa’ad Aliyu Department of Physics, Faculty of Sciences, Federal University of Lafia, P. M. B 146, Lafia, Nasarawa State, Nigeria
  • Mngusuur Scholastica Iorshase Department of Physics, Faculty of Sciences, Federal University of Lafia, P. M. B 146, Lafia, Nasarawa State, Nigeria
  • Lubem James Utume Department of Physics, Faculty of Sciences, Federal University of Lafia, P. M. B 146, Lafia, Nasarawa State, Nigeria
  • Wasiu Oyeyemi Salami Department of Polymer Technology, Nigerian Institute of Leather and Science Technology, Zaria
  • Isaac Pada Department of Medical Physics National Hospital, Abuja
  • Emmanuel Ogwuche Department of Science Laboratory and Technology, College of Environmental Sciences and Technology Makurdi, Benue State

Keywords:

Satellites, Space radiation, Linear attenuation, Beta radiation

Abstract

Satellites in space are vulnerable to high-energy electrons above that can damage their electronic systems. To curtail this challenge, a new multi-layer system is synthesized from biomass and geological ores and characterized for mechanical, thermal as well as gamma and beta radiation shielding efficiencies. The new system, a Di-layer Satellite Electronic Shielding System (DiLSES), featuring an innovative, light weight, two-layer material composite made from low atomic number material labeled which are arranged in two configurations LH and HL. This advanced material shows exceptional mechanical characteristics with impact strength of hardness of and tensile strength of, making it resistant to launch vibrations and collision with low velocity space debris. Thermogravimetric analysis (TGA) revels that DiLSES can withstand high temperature environment of up to 300 and only gradually decomposes by less than 5% between and For gamma radiation shielding efficiency, the DiLSES effectively attenuated pointed gamma radiation from Co-60 with maximum energy of 1.332 MeV by and for and the LH configuration offers better attenuation. The DiLSES attenuates high-energy beta particles generated by medical LINAC by over 93%, achieving a remarkable reduction at energy .This innovative light-weights and cost-effective material has the potential to improve the shielding of electronic components in satellites against high-energy beta particles (greater than 1 Mev) which cause satellite damage and operational failures. It also offers protection from space radiation like gamma and cosmic rays, making it useful for both space and medical applications.

Dimensions

[1] S. Dymkova, ‘‘Earth observation and global navigation satellite systems analitical report part I (aviation & space)’’, Synchroinfo J. 8 (2022) 30. http://dx.doi.org/10.36724/2664-066X-2022-8-1-30-41.

[2] C. Schuy, C. Tessa, F. Horst, M. Rovituso, M. Durante, M. Giraudo, L. Bocchini, M. Baricco, A. Castellero, G. Fioreh & U. Weber, ‘‘Experimental assessment of lithium hydride’s space radiation shielding performance and monte carlo benchmarking’’, Radiat. Res. 191 (2018) 154. https://doi.org/10.1667/RR15123.1.

[3] A. M. El-Khatib, M. M. Gouda, M. S. Fouad, M. Abd-Elzaher & W. Ramadan, ‘‘Radiation attenuation properties of chemically prepared MgO nanoparticles/HDPE composites’’, Sci. Rep. 13 (2023) 9945. 10.1038/s41598-023-37088-y. https://doi.org/10.1038/s41598-023-37088-y.

[4] H. Elmoudnia, Y. Millogo, P. Faria, R. Jalal, M. Waqif & L. Saâdi, ‘‘Development of doum palm fiber-based building insulation composites with citric acid/glycerol eco-friendly binder’’, J. Compos. Sci. 9 (2025) 67. https://doi.org/10.3390/jcs9020067.

[5] Esha & J. Hausmann, ‘‘Material characterization required for designing satellites from fiber-reinforced polymers’’, J. Compos. Sci. 7 (2023) 515. https://doi.org/10.3390/jcs7120515.

[6] G. Barra, L. Guadagno, M. Raimondo, M. G. Santonicola, E. Toto, & S. Vecchio Ciprioti, ‘‘A comprehensive review on the thermal stability assessment of polymers and composites for aeronautics and space applications’’, Polymers (Basel). 15 (2023) 3786. https://doi.org/10.3390/polym15183786.

[7] F. Chen, J. Fan, D. Hui, C. Wang, F. Yuan & X. Wu, ‘‘Mechanisms of the improved stiffness of flexible polymers under impact loading’’, Nanotechnol. Rev. 11 (2022) 3281. https://doi.org/10.1515/ntrev-2022-0437.

[8] M. I. Sayyed, ‘‘The impact of chemical composition, density and thickness on the radiation shielding properties of CaO–Al2O3–SiO2 glasses’’, Silicon 15 (2023) 7917. https://doi.org/10.1007/s12633-023-02640-y.

[9] S. C. Kim & H. Byun, ‘‘Development of ultra-thin radiation-shielding paper through nanofiber modeling of morpho butterfly wing structure’’, Sci. Rep. 12 (2022) 22532. https://doi.org/10.1038/s41598-022-27174-y.

[10] N. Ahmad, M. I. Idris, A. Hussin, J. Abdul Karim, N. M. Azreen & R. Zainon, ‘‘Enhancing shielding efficiency of ordinary and barite concrete in radiation shielding utilizations’’, Sci. Rep. 14 (2024) 26029. https://doi.org/10.1038/s41598-024-76402-0.

[11] Y. Park, J. H. Kim, H. S. Lee, E. Y. Jung, H. Lee, D. O. Noh, & H. J. Suh, ‘‘Thermal stability of yeast hydrolysate as a novel anti-obesity material’’, Food Chem. 136 (2013) 316. https://doi.org/10.1016/j.foodchem.2012.08.047.

[12] E. A. M. Farrag, ‘‘Ionizing radiation shielding properties of CdZnSe chalcogenide glass’’, Radiat. Eff. Defects Solids 2025 (2025) 1. https://doi.org/10.1080/10420150.2024.2448118.

[13] J. Tan & Y. Zhang, ‘‘Thermal conductive polymer composites: recent progress and applications’’, Molecules 29 (2024) 3572. https://doi.org/10.3390/molecules29153572.

[14] N. V. Siharova, P. Paczkowski, Y. I. Sementsov, S. V. Zhuravsky, M. V. Borysenko, A. D. Terets, O. V. Mischanchuk, M. I. Terets, Y. V. Hrebelna & B. Gawdzik, ‘‘Thermal degradation of polymer composites based on unsaturated-polyester-resin- and vinyl-ester-resin- filled kraft lignin’’, Materials 18 (2025) 524. https://doi.org/10.3390/ma18030524.

[15] R. Ogabi, B. Manescau, K. Chetehouna & N. Gascoin, ‘‘A study of thermal degradation and fire behaviour of polymer composites and their gaseous emission assessment’’, Energies 14 (2021) 7070. https://doi.org/10.3390/en14217070.

[16] L. Sidauruk, H. A. Sianturi, M. Rianna, T. Sembiring & D. A. Barus, ‘‘Determination of half value layer (hvl) value on X-rays radiography with using aluminum, copper and lead (Al, Cu, and Sn) attenuators’’, J. Phys. Conf. Ser. 1116 (2018) 032032. https://iopscience.iop.org/article/10.1088/1742-6596/1116/3/032032.

[17] A. M. Abd El-Hameed, ‘‘Radiation effects on composite materials used in space systems: a review’’, NRIAG J. Astron. Geophys. 11 (2022) 313. https://doi.org/10.1080/20909977.2022.2079902.

[18] P. S. Dahinde, G. P. Dapke, S. D. Raut, R. R. Bhosale & P. P. Pawar, ‘‘Analysis of half value layer (hvl), tenth value layer (tvl) and mean free path (mfp) of some oxides in the energy range of 122keV to 1330keV’’, Indian J. Sci. Res. 9 (2019) 79. http://dx.doi.org/10.32606/IJSR.V9.I2.00014.

[19] P. Pöml & X. Llovet, ‘‘Determination of mass attenuation coefficients of Th, U, Np, and Pu for Oxygen K α X-Rays using an electron microprobe’’, Microsc. Microanal. 26 (2020) 194. https://doi.org/10.1017/S1431927620001282.

[20] I. G. Alhindawy, M. I. Sayyed, A. H. Almuqrin & K. A. Mahmoud, ‘‘Optimizing gamma radiation shielding with cobalt-titania hybrid nanomaterials’’, Sci. Rep. 13 (2023) 8936. https://doi.org/10.1038/s41598-023-33864-y.

[21] S. Sen, J. S. O’Dell, Y. Yan, L. Heilbronn, H. Ning, M. Finckenor, M. Carrico & S. Pillay, ‘‘Space environmental effects on multifunctional radiation shielding materials’’, Earth Sp. Sci. 11 (2024) e2024EA003681. https://doi.org/10.1029/2024EA003681.

Published

2025-03-23

How to Cite

Di-layers satellite electronic shielding system (DiLSES): fabrication and characterization. (2025). Proceedings of the Nigerian Society of Physical Sciences, 2(1), 164. https://doi.org/10.61298/pnspsc.2025.2.164

How to Cite

Di-layers satellite electronic shielding system (DiLSES): fabrication and characterization. (2025). Proceedings of the Nigerian Society of Physical Sciences, 2(1), 164. https://doi.org/10.61298/pnspsc.2025.2.164