Chemostratigraphy and paleoenvironmental analysis of sand-shale formations using core geochemical spectroscopy tools

Authors

  • Oluwakemi Efemena Department of Geological Sciences, Achievers University, Owo, Ondo State, Nigeria
  • Franklin Lucas Department of Geology, University of Benin, Benin City, Nigeria

Keywords:

Clay minerals, Anoxic reducing environments, Spectral gamma-ray (SGR), Depositional settings, Niger-Delta basin

Abstract

Modern investigations into spectral gamma-ray (SGR) records enhance understanding of sedimentary environments and paleoenvironmental conditions. This study examines a 111 m sand and shale interval in the Tak-1 well, Niger Delta Basin, to characterize clay mineral types and interpret depositional settings. The evaluation of lithology, mineral composition, and geochemical properties through core slabs investigation and spectroscopic analysis revealed information about depositional settings. Spectroscopic analysis of spectral gamma-ray data identified key elements—potassium (K), uranium (U), and thorium (Th)—to differentiate clay minerals, correlate chemostratigraphy, and reconstruct paleoenvironments. Results show that the lithology consists predominantly of sandstone, with occasional interbedding of shaly sand and sandy shale. Uranium and thorium are abundant in mudrocks, while feldspars, micas, and glauconite dominate sandstones. Th/K ratio cross-plots identified smectite/mixed-layer clays, with low Th/K values indicating potassium-rich minerals such as illite, mica, or feldspar. Sandstones contained potassium-bearing minerals like glauconite and evaporites. High uranium values (10–15 ppm) and low Th/U ratios signified organic-rich source rocks formed under anoxic, reducing conditions. Extremely low potassium values (<2%) indicated terrestrial sandstone deposits rich in feldspar. These geochemical and mineralogical characteristics suggest a transitional depositional environment influenced by both terrestrial and marginal marine settings. Fluctuating sea levels shaped sedimentation, with the study interval primarily reflecting a marine paralic anoxic setting with intermittent deltaic influence.

Dimensions

[1] H. Doust & E. Omatsola, “Niger Delta,” in Divergent/Passive Margin Basins, J. D. Edwards, P. A. Santogrossi (Eds.), AAPG Memoir 48, American Association of Petroleum Geologists, Tulsa, OK, 1990, pp. 201–238. [Online]. https://doi.org/10.1306/M48508C4.

[2] K. C. Short & A. J. Stauble, “Outline of geology of Niger Delta”, American Association of Petroleum Geologists Bulletin 51 (1967) 761. https://archives.datapages.com/data/bulletns/1965-67/data/pg/0051/0005/0750/0761.htm.

[3] B. D. Evamy, J. Haremboure, P. Kamerling, W. A. Knaap, F. A. Molloy & P. H. Rowlands, “Hydrocarbon habitat of Tertiary Niger Delta,” American Association of Petroleum Geologists Bulletin 62 (1978) 1. https://doi.org/10.1306/C1EA47ED-16C9-11D7-8645000102C1865D.

[4] T. J. A. Reijers, “Stratigraphy and sedimentology of the Niger Delta”, Geologos 17 (2011) 133. https://sciendo.com/article/10.2478/v10118-011-0008-3.

[5] T. J. A. Reijers, S. W. Petters & C. S. Nwajide, “The Niger Delta basin”, in Sedimentary Basins of the World, R. C. Selley (Ed.), Elsevier, Volume 3, 1997, pp. 151–172. https://doi.org/10.1016/S1874-5997(97)80010-X

[6] N. G. Obaje, “Geology and mineral resources of Nigeria”, Developments in Petroleum Science 57 (2013) 221. https://doi.org/10.1007/978-3-540-92685-6.

[7] I. O. Ibrahim, B. D. Ibrahim, C. S. Ngozi-Chika, A. S. Adeoye & S. Shaibu, “Hydrocarbon prospectivity of selected block wells, Southern Niger Delta, Nigeria”, Discovery Nature 1 (2024) e1dn1003. https://doi.org/10.54905/disssi.v1i1.e1dn1003.

[8] J. Klaja & L. Dudek, “Geological interpretation of spectral gamma ray (SGR) logging in selected boreholes”, Nafta-Gaz 72 (2016) 3. http://dx.doi.org/10.18668/ng2016.01.01.

[9] M. M. Herron, “Geochemical classification of terrigenous sands and shales from core or log data”, Journal of Sedimentary Research 58 (1988) 820. https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D.

[10] C. T. Siemers & R. W. Tillman, “Recommendations for the proper handling of cores and sedimentological analysis of core sequences”, in Deep-water clastic sediments: a core workshop, C. T. Siemers, R. W. Tillman, C. R. Williamson (Eds.), SEPM Society for Sedimentary Geology, 1981, https://doi.org/10.2110/cor.81.01.0020.

[11] M. S. Erenpreiss, “High-resolution core photography and spectral gamma-ray logging”, A geologic play book for Utica Shale Appalachian basin exploration, D. G. Patchen & K. M. Carter (Eds.), Final report of the Utica Shale Appalachian basin exploration consortium, 2015, pp. 36–49. [Online]. Available from: http://www.wvgs.wvnet.edu/utica.

[12] M. Rider, The Geological Interpretation of Well Logs, Gulf Publishing Company, 1996. [Online]. https://archive.org/details/geologicalinterp0000ride.

[13] O. Serra, “The interpretation of logging data”, 1986. [Online]. https://www.scribd.com/document/391792483/O-Serra-the-Interpretation-of-Logging-Data-1986.

[14] R. G. Rothwell & F. Rack, “New techniques in sediment core analysis: An introduction”, Geological Society London Special Publications, 267 (2006) 1. https://doi.org/10.1144/GSL.SP.2006.267.01.01.

[15] G. Asquith & D. Krygowski, “Basic well log analysis”, in Methods in exploration, American Association of Petroleum Geologists, Tulsa, 2004, pp. 31–34. https://doi.org/10.1306/Mth16823.

[16] Y. Guan, Y. Chen, X. Sun, L. Xu, D. Xu, Z. Zhu & W. He, “The clay mineralogy and geochemistry of sediments in the beibu gulf, South Xhina sea: a record of the holocene sedimentary environmental change”, Journal of Marine Science and Engineering 11 (2023) 1463. https://doi.org/10.3390/jmse11071463.

[17] B. L. Dickson & K. M. Scott, “Interpretation of aerial gamma-ray surveys—adding the geochemical factors”, Australian Geological Survey Organisation Journal of Australian Geology & Geophysics 17 (1997) 187. https://www.osti.gov/etdeweb/biblio/499122.

[18] Schlumberger, Log interpretation charts, 2013. [Online]. https://www.spec2000.net/downloads/SLB%20Chartbook%202013.pdf.

[19] J. J. Howard, “Lithium and potassium saturation of illite/smectite clays from interlaminated shales and sandstones”, Clays and Clay Minerals 29 (1981) 136. https://doi.org/10.1346/CCMN.1981.0290208.

[20] G. Yuan, Y. Cao, H. M. Schulz, F. Hao, J. Gluyas, K. Liu, T. Yang, Y. Wang, K. Xi & F. Li, “A review of feldspar alteration and its geological significance in sedimentary basins: from shallow aquifers to deep hydrocarbon reservoirs”, Earth-Science Reviews 191 (2019) 114. https://doi.org/10.1016/j.earscirev.2019.02.004.

[21] R. L. Hay, S. G. Guldman, J. C. Matthews, R. H. Lander, M. E. Duffin & T. K. Kyser, “Clay mineral diagenesis in Core KM-3 of Searles lake, California”, Clays and Clay Minerals 39 (1991) 84. https://doi.org/10.1346/CCMN.1991.0390111.

[22] B. Lanson, D. Beaufort, G. Berger, A. Bauer, A. Cassagnabère & A. Meunier, “Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review”, Clay Minerals 37 (2002) 1. https://doi.org/10.1180/0009855023710014.

[23] K. Bjørlykke & P. Aagaard, “Clay minerals in North Sea sandstones”, in Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones, SEPM Society for Sedimentary Geology, 1992. https://doi.org/10.2110/pec.92.47.0065.

[24] J. A. S. Adams & C. E. Weaver, “Thorium-to-Uranium ratios as indicators of sedimentary processes: example of concept of geochemical facies”, American Association of Petroleum Geologists Bulletin 42 (1958) 387. https://doi.org/10.1306/0BDA5A89-16BD-11D7-8645000102C1865D.

[25] C. O. Molua, “Understanding the gamma ray log and its significance in formation analysis”, Earth Sciences Pakistan (ESP) 8 (2024) 55. http://doi.org/10.26480/esp.02.2024.55.60.

[26] J. Schieber, “Evidence for high-energy events and shallow-water deposition in the Chattanooga Shale, Tennessee, USA”, Sedimentary Geology 93 (1994) 193. https://api.semanticscholar.org/CorpusID:34870486.

[27] D. E. King, “Incorporating geological data in well log interpretation”, Geological Society, London, Special Publications 48 (1990) 45. https://www.lyellcollection.org.

[28] A. Dokuz & E. Tanyoluo, “Geochemical constraints on the provenance, mineral sorting and subaerial weathering of lower Jurassic and upper cretaceous clastic rocks of the Eastern Pontides, Yusufeli (Artvin), NE Turkey”, Turkish Journal of Earth Sciences 15 (2006) 181. https://journals.tubitak.gov.tr/earth/vol15/iss2/4.

[29] K. H. Wedepohl, “Environmental influences on the chemical composition of shales and clays”, Physics and Chemistry of the Earth 8 (1971) 307. https://doi.org/10.1016/0079-1946(71)90020-6.

[30] J. H. Doveton, “Geological log interpretation”, SEPM Society for Sedimentary Geology 29 1994 1. https://doi.org/10.2110/scn.94.29.

[31] K. J. Myers & P. B. Wignall, “Understanding Jurassic organic-rich mudrocks—new concepts using gamma-ray spectrometry and palaeoecology: examples from the Kimmeridge clay of dorset and the jet rock of Yorkshire”, in Marine clastic sedimentology, J. K. Leggett & G. G. Zuffa (Eds.), Springer, Dordrecht, 1987, pp. 172–189. https://doi.org/10.1007/978-94-009-3241-8_9.

[32] A. Ito & R. Wagai, “Global distribution of clay-size minerals on land surface for biogeochemical and climatological studies”, Scientific Data 4 (2017) 1. https://doi.org/10.1038/sdata.2017.103.

[33] Q. Hu, C. Li, B. Yang, X. Fang, H. Lü & X. Shi, “Clay mineral distribution characteristics of surface sediments in the South Mid-Atlantic Ridge”, Journal of Oceanology and Limnology 41 (2023) 897. https://doi.org/10.1007/s00343-022-2033-1.

Published

2025-03-13

How to Cite

Chemostratigraphy and paleoenvironmental analysis of sand-shale formations using core geochemical spectroscopy tools. (2025). Proceedings of the Nigerian Society of Physical Sciences, 2(1), 167. https://doi.org/10.61298/pnspsc.2025.2.167

How to Cite

Chemostratigraphy and paleoenvironmental analysis of sand-shale formations using core geochemical spectroscopy tools. (2025). Proceedings of the Nigerian Society of Physical Sciences, 2(1), 167. https://doi.org/10.61298/pnspsc.2025.2.167