High performance multilayer satellite electronic shielding system (MULSES)

Authors

  • Lubem James Utume Department of Physics, Faculty of Sciences, Federal University of Lafia, P. M. B 146, Lafia, Nasarawa State, Nigeria https://orcid.org/0000-0002-3105-4576
  • Abubakar Sadiq Aliyu Department of Physics, Faculty of Sciences, Federal University of Lafia, P. M. B 146, Lafia, Nasarawa State, Nigeria
  • Abdulkarim Muhammad Hamza Department of Physics, Faculty of Sciences, Federal University of Lafia, P. M. B 146, Lafia, Nasarawa State, Nigeria
  • Muhammad Sani Department of Physics, Faculty of Sciences, Federal University of Lafia, P. M. B 146, Lafia, Nasarawa State, Nigeria
  • Umar Sa’ad Aliyu Department of Physics, Faculty of Sciences, Federal University of Lafia, P. M. B 146, Lafia, Nasarawa State, Nigeria
  • Mngusuur Scholastica Iorshase Department of Physics, Faculty of Sciences, Federal University of Lafia, P. M. B 146, Lafia, Nasarawa State, Nigeria
  • Emmanuel Ochoyo Adamu Department of Physics, Faculty of Sciences, Federal University of Lafia, P. M. B 146, Lafia, Nasarawa State, Nigeria
  • Wasiu Oyeyemi Salami Department of Polymer Technology, Nigerian Institute of Leather and Science Technology, Zaria
  • Isaac Pada Department of Medical Physics National Hospital, Abuja
  • Emmanuel Ogwuche Department of Science Laboratory and Technology, College of Environmental Sciences and Technology Makurdi, Benue State

Keywords:

Satellites, Space radiation, Linac, HDPe, Biomass

Abstract

Passive radiation shielding has gained prominence in space technology due to satellite malfunction and destruction by high-energy beta particles in low Earth orbit (LEO). This paper describes the synthesis and characterization of a novel composite material composed of aluminum oxide (Al2 O3 ), hexagonal boron nitride (h-BN), and high-density polyethylene (HDPe) reinforced with Doum fiber. MULSES mechanical properties exhibited tensile strength of 25 MPa, hardness of 85.7 Hv, and impact energy absorption of 23.721 J, demonstrating a perfect combination of strength, flexibility, and toughness. Thermogravimetric analysis (TGA) showed the composite has thermal stability until approximately 600◦ C, degradation was initiated at 320◦ C and optimal degradation was at 480◦ C. Differential thermal analysis (DTA) showed peaks of exothermic degradation at 400◦ C and 520◦ C corresponding to decomposition of polymer and fibers, respectively, and show the suitability of the composite to handle high temperature. Radiation shielding efficiency was tested at various beta (6, 9, 10, 12, and 15 MeV) and gamma (662 keV and 1.25 MeV) energies. Stacking arrangement played a crucial role in shielding efficiency, with the BHA (Boron, HDPe, Aluminum) arrangement delivering the maximum beta radiation protection efficiency (RPE) of 99.16% at 6 MeV and 95.42% at 15 MeV. When compared to other stack arrangements, the BHA arrangement showed 12% improvement in beta attenuation efficiency and 8% improvement in gamma attenuation efficiency. The smaller mean free path (MFP) and half-value layer (HVL) for beta and gamma radiation also confirm the improved shielding property of the BHA arrangement. HDPe-Doum fiber-h-BN-Al2 O3 exhibits the optimum mechanical strength, heat stability, and radiation shielding properties all together that render MULSES a cost-effective, light, and renewable space shielding material.

Dimensions

[1] M. Durante, ‘‘Physical basis of radiation protection in space travel’’, Reviews of Modern Physics 83 (2011) 1245. https://doi.org/10.1103/RevModPhys.83.1245.

[2] Y. Liang, M. Xu, K. Peng & S. Xu, ‘‘A cislunar in-orbit infrastructure based on p:q resonant cycler orbits’’, Acta Astronaut 170 (2020) 539. https://doi.org/10.1016/j.actaastro.2020.02.029.

[3] J. J. Love, H. Hayakawa & E. W. Cliver, ‘‘Intensity and impact of the New York Railroad superstorm of May 1921’’, Space Weather 17 (2019) 1281. https://doi.org/10.1029/2019SW002250.

[4] F. A. Cucinotta, K. To & E. Cacao, ‘‘Predictions of space radiation fatality risk for exploration missions’’, Life Sciences in Space Research 13 (2017) 1. https://doi.org/10.1016/j.lssr.2017.01.005.

[5] M. Miura, K. Ono, M. Yamauchi & N. Matsuda, ‘‘Perception of radiation risk by japanese radiation specialists evaluated as a safe dose before the Fukushima nuclear accident’’, Health Physics 110 (2016) 558. https://doi.org/10.1097/HP.0000000000000486.

[6] T. C. Pereira, de M. Michele, D. Mota, M. D. Marques, de S. Marcus, V. B. de Oliveira, R. Ygor, T. B. Santos, M. Q. Pollyana, S. Melo & R. S. Coelho, ‘‘Influence of chemical structure on the thermal and mechanical properties of structural adhesives’’, Journal of Bioengineering, Technologies, and Health 7 (2024) 164. https://doi.org/10.34178/jbth.v7i2.388.

[7] A. Marques, A. Mocanu, A. Tomić, N. Balos, S. Stammen, E. Lundevall, A. Abrahami, S. Günther, R. de Kok, J. T. de Freitas & Sofia, ‘‘Review on adhesives and surface treatments for structural applications: recent developments on sustainability and implementation for metal and composite substrates’’, Materials Basel 13 (2020) 5590. https://doi.org/10.3390/ma13245590.

[8] S. Nakamura, S. Yamamoto, Y. Tsuji, K. Tanaka & K. Yoshizawa, ‘‘Theoretical study on the contribution of interfacial functional groups to the adhesive interaction between epoxy resins and aluminum surfaces’’, Langmuir 38 (2022) 6653. https://doi.org/10.1021/acs.langmuir.2c00529.

[9] F. Chen, J. Fan, D. Hui, C. Wang, F. Yuan & X. Wu, ‘‘Mechanisms of the improved stiffness of flexible polymers under impact loading’’, Nanotechnol. Review 11 (2022) 3281. https://doi.org/10.1515/ntrev-2022-0437.

[10] M. I. Sayyed, ‘‘The impact of chemical composition, density & thickness on the radiation shielding properties of CaO–Al2O3–SiO2 glasses’’, Silicon 15 (2023) 7917. https://doi.org/10.1007/s12633-023-02640-y.

[11] J. Xu, R. Xu, Z. Wang, F. Z. Zhu, X. Meng, Y. Liu, Q. Wang, & Ke, ‘‘Polyphenylene oxide/boron nitride–alumina hybrid composites with high thermal conductivity, low thermal expansion and ultralow dielectric loss’’, Polymer Composite 45 (2024) 5267. https://doi.org/10.1002/pc.28125.

[12] L. Fang, C. Wu, R. Qian, L. Xie, K. Yang & P. Jiang, ‘‘Nano–micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength’’, Royal Society of Chemistry Advances 40 (2014) 21010. https://doi.org/10.1039/C4RA01194E.

[13] M. G. Maya, P. J. Abraham, M. Arif, G. Moni, J. J. George, S. C. George & T. Sabu, ‘‘A comprehensive study on the impact of RGO/MWCNT hybrid filler reinforced polychloroprene rubber multifunctional nanocomposites’’, Polymer Testing 87 (2020) 106525. https://doi.org/10.1016/j.polymertesting.2020.106525.

[14] P. C. Calhoun, A. M. Novo-Gradac & N. Shah, ‘‘Spacecraft alignment determination and control for dual spacecraft precision formation flying’’, Acta Astronaut. 153 (2018) 349. https://doi.org/10.1016/j.actaastro.2018.02.021.

[15] S. N. Tsai, D. Carolan, S. Sprenger & A. C. Taylor, ‘‘Fracture and fatigue behaviour of carbon fibre composites with nanoparticle-sized fibres’’, Composite Structure 217 (2019) 143. https://doi.org/10.1016/j.compstruct.2019.03.015.

[16] O. Faruk, A. K. Bledzki, H. P. Fink & M. Sain, ‘‘Biocomposites reinforced with natural fibers: 2000–2010’’, Progress in Polymer Science 37 (2012) 1552. https://doi.org/10.1016/j.progpolymsci.2012.04.003.

[17] K. Manigandan, S. Srinivasan & M. Rajendran, ‘‘Ceramic-reinforced polymer matrix composites for aerospace applications: A review’’, Materials Today: Proceedings 49 (2022) 249. https://doi.org/10.1016/j.matpr.2022.03.107.

[18] S. Patel, A. Kumar & R. K. Singh, ‘‘Enhanced thermal and mechanical properties of HDPE composites filled with Al2O3 and other ceramic materials’’, Journal of Thermoplastic Composite Materials 36 (2023) 1125. https://doi.org/10.1177/08927057231101256.

[19] R. Ogabi, B. Manescau, K. Chetehouna & N. Gascoin, ‘‘A study of thermal degradation and fire behaviour of polymer composites and their gaseous emission assessment’’, Energies 14 (2021) 7070. https://doi.org/10.3390/en14217070.

[20] G. Fei, L. Nie, L. Zhong, Q. Shi, K. Hu, P. Cabrera, C. Oprins, H. Ameloot & R. Y. Shoufeng, ‘‘Photocurable resin-silica composites with low thermal expansion for 3D printing microfluidic components onto printed circuit boards’’, Materials Today Communications 31 (2022) 103482. https://doi.org/10.1016/j.mtcomm.2022.103482.

[21] R. A. Bataglioli, A. Rogério, R. Neto, B. M. João, Calais, G. B. Lopes, L. M. Tsukamoto, J. de Moraes, A. P. Arns, C. W. Beppu & Marisa M., ‘‘Hybrid alginate–copper sulfate textile coating for coronavirus inactivation’’, Journal of the American Ceramic Society 105 (2022) 1748. https://doi.org/10.1111/jace.17862.

[22] M. G. Cooper, L. Smith C. Rennermalm, A. K. Tedesco, M. Muthyala, R. Leidman, S. Z. Moustafa, S. E. Fayne & V. Jessica, ‘‘Spectral attenuation coefficients from measurements of light transmission in bare ice on the Greenland Ice Sheet’’, Cryospher 15 (2021) 1931. https://doi.org/10.5194/tc-15-1931-2021.

[23] S. Singh, P. Kumar & R. Yadav, ‘‘Performance of nanofiller-reinforced HDPE composites under radiation exposure’’, Materials Today: Proceedings 70 (2023) 839. https://doi.org/10.1016/j.matpr.2023.05.046.

[24] M. J. Zaccardi, R. Roach & J. Fenton, ‘‘Recent advances in polymer-based materials for space radiation shielding’’, Materials (Basel). 16 (2023) 2084. https://doi.org/10.3390/ma16052084.

[25] Y. Zhang, Y. Shen, Y. Lin & C. W. Nan, ‘‘Polymer- and ceramic-based composite dielectrics for energy storage applications: a review’’, Journal of Advanced Dielectrics 10 (2020) 2030004. https://doi.org/10.1142/S2010135X20300045.

[26] A. El-Khayatt, ‘‘Theoretical insights into the half-value layer of advanced shielding materials’’, Radiation Physics Chemistry 203 (2023) 110657. https://doi.org/10.1016/j.radphyschem.2023.110657.

[27] M. S. Al-Buriahi, J. Al-Zahrani & T. Alharbi, ‘‘Radiation shielding properties of novel composite materials: Evaluation and applications’’, Journal Radiation Physics Chemistry 194 (2022) 109929. https://doi.org/10.1016/j.radphyschem.2022.109929.

[28] L. Sidauruk, H. A. Sianturi, M. Rianna, T. Sembiring & D. A. Barus, ‘‘Determination of half value layer (hvl) value on x-rays radiography with using aluminum, copper and lead (Al, Cu, and Sn) attenuators’’, Journal of Physics: Conference Series 1116 (2018) 032032. https://doi.org/10.1088/1742-6596/1116/3/032032.

[29] M. I.Sayyed, B. Albarzan, A. H. Almuqrin, A. M. El-Khatib, A. Kumar, D. I. Tishkevich, A. V. Trukhanov & M. Elsafi, ‘‘Experimental and theoretical study of radiation shielding features of CaO-K2O-Na2O-P2O5 glass systems’’, Materials 14 (2021) 772. https://doi.org/10.3390/ma14143772.

[30] S. Sen, S. O’Dell, J. S.Yan, Y. Heilbronn, L. Ning, H. Finckenor, M. Carrico, &M. P. Selvum, ‘‘Space environmental effects on multifunctional radiation shielding materials’’, Earth and Space Science 11 (2024) 11. https://doi.org/10.1029/2024EA003681.

[31] A. M. Abd El-Hameed, ‘‘Radiation effects on composite materials used in space systems: a review’’, Journal of Astronomy and Geophysics 11 (2022) 313. https://doi.org/10.1080/20909977.2022.2079902.

[32] P. S. Dahinde, G. P. Dapke, S. D. Raut, R. R. Bhosale & P. P. Pawar, ‘‘Analysis of half value layer (HVL), tenth value layer (TVL) and mean free path (MFP) of some oxides in the energy range of 122KeV to 1330KeV’’, Indian Journal of Scientific Research 9 (2019) 79. https://doi.org/10.32606/IJSR.V9.I2.00014.

[33] I. G. Alhindawy, M. I. Sayyed, A. H. Almuqrin & K. A. Mahmoud, ‘‘Optimizing gamma radiation shielding with cobalt-titania hybrid nano-materials’’, Scientific Reports 13 (2023) 8936. https://doi.org/10.1038/s41598-023-33864-y.

[34] T. Grinberg, M. Kalugin & S. Dmitriev, ‘‘Polyethylene-based materials for radiation shielding in space applications’’, Radiation. Physics. Chemistry 144 (2018) 155. https://doi.org/10.1016/j.radphyschem.2018.01.018.

[35] J. M. Molina, J. M. Pérez & F. González, ‘‘Boron-based composite materials for advanced radiation shielding: a review’’, Composite. Structure 236 (2020) 111896. https://doi.org/10.1016/j.compstruct.2020.111896.

Published

2025-03-23

How to Cite

High performance multilayer satellite electronic shielding system (MULSES). (2025). Proceedings of the Nigerian Society of Physical Sciences, 2(1), 168. https://doi.org/10.61298/pnspsc.2025.2.168

How to Cite

High performance multilayer satellite electronic shielding system (MULSES). (2025). Proceedings of the Nigerian Society of Physical Sciences, 2(1), 168. https://doi.org/10.61298/pnspsc.2025.2.168