Effect of deformation on alpha decay of super-heavy nuclei within a Woods-Saxon model

Authors

  • S. A. Shittu Department of Physics and Materials Science, Kwara State University, Malete, Nigeria
  • H. A. Mustapha Department of Physics and Materials Science, Kwara State University, Malete, Nigeria

Keywords:

Alpha decay, Woods-Saxon model, Deformation, Super-heavy nuclei

Abstract

In this research, alpha decay study of super-heavy nuclei has been carried out by employing the Woods-Saxon model potential. The spherical and deformed Woods-Saxon model have been employed to investigate the effect of deformation on the super-heavy nuclei via alpha decay. When compared with experimental data, the two models are found to perform very well in describing the experimental half-life data. Moreover, results obtained by considering deformation is found to give better agreement with the experimental data than the results using spherical configuration. This is mainly because the super-heavy nuclei have non-zero deformation parameters. The study concludes that deformation should be considered when studying super-heavy nuclei, and that the deformed Woods-Saxon model is more complete in describing the interaction between the alpha decay and the daughter nuclei as it has a low standard deviation value of 0.5012 compared to 0.6260 when only sphericity is considered.

Dimensions

[1] J. H. Cheng, J. L. Chen, J. G Deng, X. J. Wu, X. H. Li & P. C. Chu, ‘‘Systematic study of α decay half-lives based on Gamow–like model with a screened electrostatic barrier", Nuclear Physics A 987 (2019) 350. https://doi.org/10.1016/j.nuclphysa.2019.05.002.

[2] D. T. Akrawy & A. H. Ahmed, ‘‘α-decay systematics for superheavy nuclei’’, Physical Review C 100 (2019) 044618. https://doi.org/10.1103/PhysRevC.100.044618.

[3] V. Zanganah, D. T. Akrawy, H. Hassanabadi, S. S. Hosseini & Shagun Thakur, ‘‘Calculation of α-decay and cluster half-lives for 197-226Fr using temperature-dependent proximity potential model’’, Nuclear Physics A 997 (2020) 121714. https://doi.org/10.1016/j.nuclphysa.2020.121714.

[4] G. Gamow, ‘‘The quantum theory of nuclear disintegration’’, Nature 122 (1928) 3082. https://doi.org/10.1038/122805b0.

[5] R. W. Gurney & E. U. Condon, ‘‘Wave mechanics and radioactive disintegration’’, Nature 122 (1928) 3073. https://doi.org/10.1038/122439a0.

[6] R. W. Gurney & E. U. Condon, ‘‘Quantum mechanics and radioactive disintegration’’, Physical Review 33 (1929) 127. https://doi.org/10.1103/PhysRev.33.127.

[7] Y. J. Wang, H. F. Zhang, W. Zuo & J. Q. Li, ‘‘Improvement of a fission-like model for nuclear α decay’’, Chinese Physics Letters 27 (2010) 062103. https://doi.org/10.1088/0256-307X/27/6/062103.

[8] J. G. Deng, J. C. Zhao, P. C Chu & X.-H. Li, ‘‘Systematic study of α decay of nuclei around the Z= 82, N= 126 shell closures within the cluster-formation model and proximity potential 1977 formalism’’, Physical Review C 97 (2018) 044322. https://doi.org/10.1103/PhysRevC.97.044322.

[9] S. M. S. Ahmed, "Alpha-cluster preformation factor within cluster-formation model for odd-A and odd–odd heavy nuclei’’, Nuclear Physics A 962 (2017) 103. https://doi.org/10.1016/j.nuclphysa.2017.03.005.

[10] B. Singh, S. K. Patra & R. K. Gupta. "Cluster radioactive decay within the preformed cluster model using relativistic mean-field theory densities’’, Physical Review C 82 (2010) 014607. https://doi.org/10.1103/PhysRevC. 82.014607.

[11] J. P. Cui, Y. H. Gao, Y. Z. Wang & J. Z. Gu, ‘‘Improved effective liquid drop model for α-decay half-lives’’, Nuclear Physics A 1017 (2022) 122341. https://doi.org/10.1016/j.nuclphysa.2021.122341.

[12] X. Bao, H. Zhang, H. Zhang, G. Royer & J. Li, ‘‘Systematical calculation of α decay half-lives with a generalized liquid drop model’’, Nuclear Physics A 921 (2014) 85. https://doi.org/10.1016/j.nuclphysa.2013.11.002.

[13] D. T. Akrawy, K. P. Santhosh & H. Hassanabadi, ‘‘α-decay half-lives of some superheavy nuclei within a modified generalized liquid drop model’’, Physical Review C 100 (2019) 034608. https://doi.org./10.1103/PhysRevC.100.034608.

[14] S. A. Gurvitz & G. Kalbermann, ‘‘Decay width and the shift of a quasis-tationary state’’, Physical review letters 59 (1987) 262. https://doi.org/10.1103/PhysRevLett.59.262.

[15] X. D. Sun, P. Guo & X. H. Li, ‘‘Systematic study of favored α-decay half-lives of closed shell odd-A and doubly-odd nuclei related to ground and isomeric states’’, Physical Review C 94 (2016) 024338. https://doi.org/10.1103/PhysRevC.94.024338.

[16] V. E. Viola Jr & G. T. Seaborg, ‘‘Nuclear systematics of the heavy elements—II Lifetimes for alpha, beta and spontaneous fission decay’’, Journal of Inorganic and Nuclear Chemistry 28 (1966) 741. https://doi.org/10.1016/0022-1902(66)80412-8.

[17] G. Royer, ‘‘Alpha emission andspontaneous fission through quasi-molecularshapes’’, Journal of Physics G: Nuclear and Particle Physics 26 (2000) 1149. https://doi.org/10.1088/0954-3899/26/8/305.

[18] J. G. Deng, H. F. Zhang & G. Royer, ‘‘Improved empirical formula for alpha-decay half-lives’’, Physical Review C 101 (2020) 034307. https://doi.org/10.1103/PhysRevC.101.034307.

[19] Z. Ren, C. Xu & Z. Wang, ‘‘New perspective on complex cluster radioactivity of heavy nuclei’’, Physical Review C 70 (2004) 034304. https://doi.org/10.1103/PhysRevC.70.034304.

[20] D. T. Akrawy, H. Hassanabadi, Yibin Qian & K. P. Santhosh, ‘‘Influence of nuclear isospin and angular momentum on α-decay half-lives’’, Nuclear Physics A 983 (2019) 310. https://doi.org/10.1016/j.nuclphysa.2018.10.091.

[21] C. Qi, F. R. Xu, R. J. Liotta, R. Wyss, M. Y. Zhang, C. Asawatangtrakuldee & D. Hu, ‘‘Microscopic mechanism of charged-particle radioactivity and generalization of the Geiger-Nuttall law’’, Physical Review C 80 (2009) 044326. https://doi.org/10.1103/PhysRevC.80.044326.

[22] M. Horoi, ‘‘Scaling behaviour in cluster decay’’, Journal of Physics G: Nuclear and Particle Physics 30 (2004) 945. https://doi.org/10.1088/0954-3899/30/7/010.

[23] D. T. Akrawy & A. H. Ahmed, ‘‘New empirical formula for α-decay calculations’’, International Journal of Modern Physics E 27 (2018) 1850068. https://doi.org/10.1142/S0218301318500684.

[24] V. Y. Denisov & A. A. Khudenko, ‘‘α-decay half-lives: empirical relations’’, Physical Review C 79 (2009) 054614. https://doi.org/10.1103/PhysRevC.79.054614.

[25] H. F. Gui, H. M. Liu, X. J. Wu, P. C. Chu, B. He & X. H. Li, ‘‘Systematic study of α decay half-lives for even–even nuclei within a deformed two-potential approach’’, Communications in Theoretical Physics 74 (2022) 055301. https://doi.org/10.1088/1572-9494/ac6576.

[26] M. R. Pahlavani & N. Karamzadeh, ‘‘Partial α-decay half-lives of ground to ground and ground to excited states of Thorium family’’, Chinese Journal of Physics 56 (2018) 1727. https://doi.org/10.1016/j.cjph.2018.05.014.

[27] W. A. Yahya, O. J. Oluwadare & B. J. Falaye, ‘‘Alpha decay half-lives of heavy and superheavy nuclei within a deformed double folding model’’, International Journal of Theoretical Physics 63 (2024) 46. https://doi.org/10.1007/s10773-024-05575-1.

[28] D. Karlgren, R. J. Liotta, R. Wyss, M. Huyse, K. Van de Vel & P. Van Duppen, ‘‘α-decay hindrance factors: A probe of mean-field wave functions’’, Physical Review C 73 (2006) 064304. https://doi.org/10.1103/PhysRevC.73.064304.

[29] H. Hassanabadi, E. Javadimanesh, S. Zarrinkamar & H. Rahimov, ‘‘An angle-dependent potential and alpha-decay half-lives of deformed nuclei for 67≤ Z≤ 91’’, Chinese physics C 37 (2013) 044101. https://doi.org/10.1088/1674-1137/37/4/044101.

[30] C. Xu & Z. Ren, ‘‘New deformed model of α-decay half-lives with a microscopic potential’’, Physical Review C 73 (2006) 041301. https://doi.org/10.1103/PhysRevC.73.041301.

[31] W. A. Yahya, J. T. Majekodunmi, S. I. B. van der Ventel, H. A. Mustapha & B. Mukeru, ‘‘Effects of finite-range exchange terms and deformation on the α-decay half-lives using the B3Y NN interaction’’, Physical Review C 111 (2025) 004300. https://doi.org/10.1103/PhyRevC.111.024322.

[32] W. A. Yahya, ‘‘Theoretical calculations of the alpha decay half-lives of 166-190Pt’’, Iranian Journal of Physics Research 21 (2021) 63. https://doi.org/10.47176/ijpr.21.3.41231.

[33] C. Qi, F. R. Xu, R. J. Liotta & R. Wyss, ‘‘Universal decay law in charged-particle emission and exotic cluster radioactivity’’, Physical review letters 103 (2009) 072501. https://doi.org/10.1103/PhysRevLett.103.072501.

[34] M. R. Pahlavani & S. R. Shamami. "Clusters decay half-live of various heavy deformed nuclei with mass numbers in the range 221 ≤ A ≤ 242’’, Chinese Journal of Physics 66 (2020) 733. https://doi.org/10.1016/j.cjph.2020.06.019.

[35] W. A. Yahya & B. J. Falaye, ‘‘Alpha decay study of Thorium isotopes using double folding model with NN interactions derived from relativistic mean field theory’’, Nuclear Physics A 1015 (2021) 122311. https://doi.org/10.1016/j.nuclphysa.2021.122311.

[36] W. A. Yahya & K. J. Oyewumi, ‘‘Calculations of the alpha decay half-lives of some polonium isotopes using the double folding model’’, Acta Phys. Pol. B 52 (2021) 1357. https://doi.org/10.48550/arXiv.2111.05604.

[37] W. A. Yahya, ‘‘Alpha decay half-lives of 171-189 Hg isotopes using Modified Gamow-like model and temperature dependent proximity potential’’, Journal of the Nigerian Society of Physical Sciences 2 (2020) 250. https://doi.org/10.46481/jnsps.2020.139.

[38] A. Zdeb, M. Warda & K. Pomorski. "Half-lives for α and cluster radioactivity within a Gamow-like model’’, Physical Review C 87 (2013) 024308. https://doi.org/10.1103/PhysRevC.87.024308.

[39] N. Maroufi, V. Dehghani & S. A. Alavi, ‘‘Cluster decay half-life with double-folding potential: Uncertainty analysis’’, Acta Phys. Pol. B 50 (2019) 1349. https://doi.org/10.5506/APhysPolB.50.1349.

[40] W. J. Huang, M. Wang, F. G. Kondev, G. Audi & S. Naimi, ‘‘The AME 2020 atomic mass evaluation (I). Evaluation of input data, and adjustment procedures’’, Chinese Physics C 45 (2021) 030002. https://doi.org/10.1088/1674-1137/abddb0.

[41] F. G. Kondev, M. Wang, W. J. Huang, S. Naimi & G. Audi, ‘‘The NUBASE2020 evaluation of nuclear physics properties’’, Chinese Physics C 45 (2021) 030001. https://doi.org/10.1088/1674-1137/abddae.

[42] M. Wang, W. J. Huang, F. G. Kondev, G. Audi & S. Naimi, ‘‘The AME 2020 atomic mass evaluation (II). Tables, graphs and references’’, Chinese Physics C 45 (2021) 030003. https://doi.org/10.1088/1674-1137/abddaf.

Published

2025-03-23

How to Cite

Effect of deformation on alpha decay of super-heavy nuclei within a Woods-Saxon model. (2025). Proceedings of the Nigerian Society of Physical Sciences, 2(1), 177. https://doi.org/10.61298/pnspsc.2025.2.177

How to Cite

Effect of deformation on alpha decay of super-heavy nuclei within a Woods-Saxon model. (2025). Proceedings of the Nigerian Society of Physical Sciences, 2(1), 177. https://doi.org/10.61298/pnspsc.2025.2.177