Modelling the effect of vaccination on the dynamics of tuberculosis in an age-structured population

Authors

  • Omowumi Fatimah Lawal Department of Mathematical Sciences, Bamidele Olumilua University of Education, Science, and Technology, Ikere-Ekiti, P.M.B. 250, Ekiti State, Nigeria
  • Afeez Abidemi Department of Mathematical Sciences, Federal University of Technology Akure, P.M.B. 704, Ondo State, Nigeria

Keywords:

Tuberculosis, Age-structured population, Effective reproduction number, Vaccination

Abstract

Despite several efforts, Tuberculosis (TB) is still a global leading cause of death. This paper proposed an age-structured deterministic model governing the transmission dynamics and control of TB in the presence of vaccination integrated into the eligible population. Qualitative analysis of the model was carried out to obtain the disease-free equilibrium point of it. The effective reproduction number, Re , of the model was calculated using the next generation matrix method, which offered a numerical indicator of the potential for TB transmission in the age-structured population. Numerical analysis further offers some insightful information about how the key sensitive parameters and the vaccination rate influence the transmission dynamics and control of TB in an age-structured population
settings.

Dimensions

[1] M. Ronoh, R. Jaroudi, P. Fotso, V. Kamdoum, N. Matendechere, J. Wairimu, R. Auma & J. Lugoye, ‘‘A mathematical model of tuberculosis with drug resistance effects’’, Applied Mathematics 7 (2016) 1303. http://dx.doi.org/10.4236/am.2016.712115.

[2] World Health Organization, ‘‘Key facts on tuberculosis’’, 2024. [Online]. Accessed 06 January 2025. https://www.who.int/news-room/fact-sheets/detail/tuberculosis.

[3] World Health Organization, ‘‘Article on the overview, symptoms, treatment of tuberculosis’’, 2025. [Online]. Accessed 06 January 2025. https://www.who.int/health-topics/tuberculosis#tab=tab_1.

[4] E. Ibargüen-Mondragón, L. Esteva & E. M. Burbano-Rosero, ‘‘Mathematical model for the growth of Mycobacterium tuberculosis in the granuloma’’, Mathematical Biosciences & Engineering 15 (2018) 407. https://doi.org/10.3934/mbe.2018018.

[5] A. Abidemi, N. A. B. Aziz & E. Pindza, ‘‘Deterministic modelling of optimal control strategies for dengue fever transmission in two interconnected patches’’, Mathematical Sciences 18 (2024) 571. https://doi.org/10.1007/s40096-023-00517-0.

[6] S. Olaniyi, S. F. Abimbade, F. M. Chuma, O. A. Adepoju & O. D. Falowo, ‘‘A fractional-order tuberculosis model with efficient and cost-effective optimal control interventions’’, Decision Analytics Journal 8 (2023) 100324. https://doi.org/10.1016/j.dajour.2023.100324.

[7] F.O.Lawal, T.T. Yusuf, A. Abidemi & O. Olotu, ‘‘A non-linear mathematical model for typhoid fever transmission dynamics with medically hygienic compartment’’, Modeling Earth Systems and Environment 10 (2024) 6213. https://doi.org/10.1007/s40808-024-02111-2.

[8] B. Bolaji, A. Ibrahim, F. Ani, B. Omede & G. Acheneje, ‘‘A model for the control of transmission dynamics of human monkeypox disease in sub-saharan africa’’, Journal of the Nigerian Society of Physical Sciences 6 (2024) 1800. https://doi.org/10.46481/jnsps.2024.1800.

[9] S. Ajao, I. Olopade, T. Akinwumi, S. Adewale & A. Adesanya, ‘‘Understanding the transmission dynamics and control of hiv infection: A mathematical model approach’’, Journal of the Nigerian Society of Physical Sciences 5 (2023) 1389. https://doi.org/10.46481/jnsps.2023.1389.

[10] E .C. Duru, G. C. E. Mbah, M. C. Anyanwu & N. T. Nnamani, ‘‘Modelling the co-infection of malaria and zika virus disease’’, Journal of the Nigerian Society of Physical Sciences 6 (2024) 1938. https://doi.org/10.46481/jnsps.2024.1938.

[11] K. A. Tijani, C. E. Madubueze & R. I. Gweryina, ‘‘Typhoid fever dynamical model with cost-effective optimalcontrol’’, Journal of the Nigerian Society of Physical Sciences 5 (2023) 1579. https://doi.org/10.46481/jnsps.2023.1579.

[12] A. B. Hogan, K. Glass, H.C. Moore & R. S. Anderssen, ‘‘Age structures in mathematical models for infectious diseases, with a case study of respiratory syncytial virus’’, in Applications + Practical Conceptualization +Mathematics = fruitful Innovation. Mathematics for Industry R. Anderssen (Ed.) 11 (2016) 105. https://doi.org/10.1007/978-4-431-55342-7_9.

[13] O. J. Peter, A. Abidemi, F. Fatmawati, M. M.Ojo & F. A. Oguntolu’’, Optimizing tuberculosis control: a comprehensive simulation of integrated interventions using a mathematical model’’ Mathematical Modelling and Numerical Simulation with Applications 4 (2024) 238. https://doi.org/10.53391/mmnsa.1461011.

[14] A. O. Sangotola, S. B. Adeyemo, O. A. Nuga, A. E. Adeniji & A. J. Adigun, ‘‘A tuberculosis model with three infected classes’’, Journal of the Nigerian Society of Physical Sciences 6 (2024) 1881. https://doi.org/10.46481/jnsps.2024.1881.

[15] E. D. Moya, A. Pietrus & S. M. Oliva, ’’A mathematical model for the study of effectiveness in therapy in tuberculosis taking into account associated diseases’’, Contemporary Mathematics 2 (2021) 77. https://ojs.wiserpub.com/index.php/CM/article/view/694.

[16] R. F. Appiah, Z. Jin, J. Yang & J .K. K. Asamoah, ‘‘Optimal control and cost-effectiveness analysis for a tuberculosis vaccination model with two latent classes’’, Modeling Earth Systems and Environment 10 (2024) 6761. https://doi.org/10.1007/s40808-024-02128-7.

[17] J. M. Trauer, J. T Denholm & E. S. McBryde, ‘‘Construction of a mathematical model for tuberculosis transmission in highly endemic regions of the Asia-Pacific’’, Journal of theoretical biology 358 (2014) 74. https://doi.org/10.1016/j.jtbi.2014.05.023.

[18] O. F. Lawal, T. T. Yusuf & A. Abidemi, ‘‘Modelling the impact of vaccination on transmission dynamics of Typhoid fever’’, Results in Control and Optimization 8 (2023) 100310. https://doi.org/10.1016/j.rico.2023.100310.

[19] P. van den Driessche & J. Watmough, ‘‘Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission’’, Mathematical biosciences 180 (2002) 29. https://doi.org/10.1016/S0025-5564(02)00108-6.

Published

2025-03-25

How to Cite

Modelling the effect of vaccination on the dynamics of tuberculosis in an age-structured population. (2025). Proceedings of the Nigerian Society of Physical Sciences, 2(1), 179. https://doi.org/10.61298/pnspsc.2025.2.179

How to Cite

Modelling the effect of vaccination on the dynamics of tuberculosis in an age-structured population. (2025). Proceedings of the Nigerian Society of Physical Sciences, 2(1), 179. https://doi.org/10.61298/pnspsc.2025.2.179