Green synthesis of zinc oxide nanoparticles: A trifecta of antioxidant, antifungal, and catalytic excellence

Authors

  • Abraham Y. Danas Department of Chemistry, Federal University of Lafia, PMB 146, Lafia, Nasarawa State, Nigeria
  • Ayomide H. Labulo Department of Chemistry, Federal University of Lafia, PMB 146, Lafia, Nasarawa State, Nigeria
  • Abdullahi Usman Department of Chemistry, Federal University of Lafia, PMB 146, Lafia, Nasarawa State, Nigeria
  • Ibrahim Hassan Department of Chemistry, Federal University of Lafia, PMB 146, Lafia, Nasarawa State, Nigeria
  • Augustine D. Terna Department of Chemistry, Federal University of Technology, PMB 1526, Owerri, Imo State, Nigeria
  • Festus O. Ogungbemiro Department of Chemistry, Federal University of Lafia, PMB 146, Lafia, Nasarawa State, Nigeria
  • David A. Oyinade Department of Plant Science and Biotechnology, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
  • Ambo A. Idzi Department of Chemistry, Federal University of Lafia, PMB 146, Lafia, Nasarawa State, Nigeria
  • Mojisola Owoseni Department of Microbiology, Federal University of Lafia, P.M.B 146, Lafia, Nasarawa State, Nigeria
  • Maryam Isah Department of Science Laboratory Technology, Federal University of Lafia, PMB 146, Lafia, Nasarawa State, Nigeria
  • Rukayat A. Ashonibare Durable Crops Research Department, Nigerian Stored Products Research Institute, P.M.B. 1489, Ilorin, Kwara State, Nigeria
  • Kehinde A. Ojedola Department of Chemistry, Federal University of Lafia, PMB 146, Lafia, Nasarawa State, Nigeria
  • Hafsat O. Dahiru Department of Chemistry, Federal University of Lafia, PMB 146, Lafia, Nasarawa State, Nigeria
  • Zikhona Tywabi-Ngeva Department of Chemistry, Nelson Mandela University Room: 0003. Floor: Ground. Building: 13. Campus: South, South Africa
  • Muhammad A. Said Department of Chemistry, Nelson Mandela University Room: 0003. Floor: Ground. Building: 13. Campus: South, South Africa
  • Caroline A. Muaka Department of Psychology, Faculty of Applied Sciences, Daystar University, Kenya

Keywords:

4-nitrophenol, Antioxidant, Antifungal, Zinc oxide

Abstract

In this study, green synthesis methods were employed to fabricate zinc oxide nanoparticles (ZnONPs) using Newbouldia laevis leaves plant extract. Several analytical methods, including Fourier-Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Transmission Electron Microscopy (TEM), and UV-Vis spectrophotometer, were used to characterise the green synthesised ZnONPs. The synthesis of ZnONPs with distinct properties was successfully demonstrated by the structural and morphological investigations. The existence of functional groups involved in the stabilisation and reduction of the nanoparticles was established by FTIR. The shape of the nanoparticles was revealed by TEM. It produced non-spherical particles with a well-defined size distribution, a crystalline structure with a hexagonal shape morphology, and an average nanoparticle size of 34.8 nm. The ZnONPs that were green-synthesised demonstrated unique antioxidant characteristics. The findings showed that the ZnONPs’ capacity to scavenge radicals increased in a concentration-dependent manner. Excellent antifungal activities against Trichophyton rubrum, Aspergilus fumigatus, and Candida albicans were also demonstrated by the synthesised ZnONPs. This suggests that at 100, 200, and 400 mg/mL, the environmentally friendly ZnONPs show inhibitory zones that range from 9 to 18 mm. The use green synthesized ZnO NPs have shown excellent antifungal, antioxidant and photocatalytic reduction of 4-nitrophenol under sunlight. Green synthesis, zinc oxide nanoparticles, 4-ntrophenol, Trichophyton rubrum.

Dimensions

[1] S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani & F. Rizzolio, ‘‘The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine’’, Molecules 25 (2019) 112. https://doi.org/10.3390/molecules25010112.

[2] I. Khan, K. Saeed & I. Khan, ‘‘Nanoparticles: Properties, applications and toxicities’’, Arab. J. Chem. 12 (2019) 908. https://doi.org/10.1016/j.arabjc.2017.05.011.

[3] N. Baig, I. Kammakakam & W. Falath, ‘‘Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges’’, Mater. Adv. 2 (2021) 1821. https://doi.org/10.1039/D0MA00807A.

[4] D. Li, Q. Lian, T. Du, R. Ma, H. Liu, Q. Liang, Y. Han, G. Mi, O. Peng, G. Zhang, W. Peng, B. Xu, X. Lu, K. Liu, J. Yin, Z. Ren, G. Li & C. Cheng, ‘‘Co-adsorbed self-assembled monolayer enables highperformance perovskite and organic solar cells’’, Nat. Commun. 15 (2024) 7605. https://doi.org/10.1038/s41467-024-51760-5.

[5] V. Lotito & T. Zambelli, ‘‘Approaches to self-assembly of colloidal monolayers: A guide for nanotechnologists’’, Adv. Colloid Interface Sci. 246 (2017) 217. https://doi.org/10.1016/j.cis.2017.04.003.

[6] S. Hajebi, N. Rabiee, M. Bagherzadeh, S. Ahmadi, M. Rabiee, H. RoghaniMamaqani, M. Tahriri, L. Tayebi & M. Hamblin, ‘‘Stimulus-responsive polymeric nanogels as smart drug delivery systems’’, Acta Biomater. 92 (2019) 1. https://doi.org/10.1016/j.actbio.2019.05.018.

[7] M. Behrens, ‘‘Coprecipitation: An excellent tool for the synthesis of supported metal catalysts – From the understanding of the well known recipes to new materials’’, Catal. Today 246 (2015) 46. https://doi.org/10.1016/j.cattod.2014.07.050.

[8] K. Jayaraman, M. V. Kok & I. Gokalp, ‘‘Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends’’, Renew. Energy 101 (2017) 293. https://doi.org/10.1016/j.renene.2016.08.072.

[9] X. Zhang, L. Zhou, X. Tu & F. Hu, ‘‘Hydrothermal synthesis of ZnO Crystals: Diverse morphologies and characterization of the photocatalytic properties’’, Polyhedron 246 (2023) 116668. https://doi.org/10.1016/j.poly.2023.116668.

[10] H. Udayagiri, S. S. Sana, L. K. Dogiparthi, R. Vadde, R. S. Varma, J. R. Koduru, G. S. Ghodake, A. R. Somala, V. K. Naidu Boya, S. Kim & R. R. Karri, ‘‘Phytochemical fabrication of ZnO nanoparticles and their antibacterial and anti-biofilm activity’’, Sci. Rep. 14 (2024) 19714. https://doi.org/10.1038/s41598-024-69044-9.

[11] A. de Castro Lopes, D. M. de Sousa, G. M. Chaer, F. dos Reis Junior, W. J. Goedert & I. de Carvalho Mendes, ‘‘Interpretation of Microbial Soil Indicators as a Function of Crop Yield and Organic Carbon’’, Soil Sci. Soc. Am. J. 77 (2013) 461. https://doi.org/10.2136/sssaj2012.0191.

[12] N. Asif, M. Amir & T. Fatma, ‘‘Recent advances in the synthesis, characterization and biomedical applications of zinc oxide nanoparticles’’, Bioprocess Biosyst. Eng. 46 (2023) 1377. https://doi.org/10.1007/s00449-023-02886-1.

[13] A. Lipovsky, Y. Nitzan, A. Gedanken & R. Lubart, ‘‘Antifungal activity of ZnO nanoparticles–the role of ROS mediated cell injury’’, Nanotechnology 22 (2011) 105101. https://doi.org/10.1088/0957-4484/22/10/105101.

[14] M. Stan, A. Popa, D. Toloman, A. Dehelean, I. Lung & G. Katona, ‘‘Enhanced photocatalytic degradation properties of zinc oxide nanoparticles synthesized by using plant extracts’’, Mater. Sci. Semicond. Process. 39 (2015) 23. https://doi.org/10.1016/j.mssp.2015.04.038.

[15] J. Nandhini, E. Karthikeyan & S. Rajeshkumar, ‘‘Green synthesis of zinc oxide nanoparticles: Eco-friendly advancements for biomedical marvels’’, Resour. Chem. Mater. 5 (2024) 1. https://doi.org/10.1016/j.recm.2024.05.001.

[16] H. Perumalsamy, S. R. Balusamy, J. Sukweenadhi, S. Nag, D. MubarakAli, M. El-Agamy Farh, H. Vijay & S. Rahimi, ‘‘A comprehensive review on Moringa oleifera nanoparticles: importance of polyphenols in nanoparticle synthesis, nanoparticle efficacy and their applications’’, J. Nanobiotechnology, 22 (2024) 71. https://doi.org/10.1186/s12951-024-02332-8.

[17] Y. Gao, D. Xu, D. Ren, K. Zeng & X. Wu, ‘‘Green synthesis of zinc oxide nanoparticles using Citrus sinensis peel extract and application to strawberry preservation: A comparison study’’, LWT 126 (2020) 109297. https://doi.org/10.1016/j.lwt.2020.109297.

[18] I. S. Dassekpo, E. G. Achigan-Dako, B. Tenté, C. S. Houssou & A. Ahanchédé, ‘‘Valuation of Newbouldia laevis and its endogenous conservation in Benin (West Africa)’’, J. Herb. Med. 23 (2020) 100388. https://doi.org/10.1016/j.hermed.2020.100388.

[19] J. B. Habu & B. O. Ibeh, ‘‘In vitro antioxidant capacity and free radical scavenging evaluation of active metabolite constituents of Newbouldia laevis ethanolic leaf extract’’, Biol. Res. 48 (2015) 16. https://doi.org/10.1186/s40659-015-0007-x.

[20] C. Umeyor, E. Anaka, F. Kenechukwu, C. Agbo & A. Attama, ‘‘Development, in vitro and in vivo evaluations of novel lipid drug delivery system of Newbouldia laevis (P. Beauv.)’’, Nanobiomedicine 3 (2016) 1. https://doi.org/10.1177/1849543516673445.

[21] T.G.Atere, O.A.Akinloye, R.N.Ugbaja, D.A.Ojo&G.Dealtry, ‘‘Invitro antioxidant capacity and free radical scavenging evaluation of standardized extract of Costus afer leaf’’, Food Sci. Hum. Wellness 7 (2018) 266. https://doi.org/10.1016/j.fshw.2018.09.004.

[22] D. C. Bouttier-Figueroa, M. Cortez-Valadez, M. Flores-Acosta & R. E. Robles-Zepeda, ‘‘Green synthesis of zinc oxide nanoparticles using plant extracts and their antimicrobial activity’’, Bionanoscience 14 (2024) 3385. https://doi.org/10.1007/s12668-024-01471-4.

[23] D. Sarpong, D. Boakye, G. Ofosu & D. Botchie, ‘‘The three pointers of research and development (R&D) for growth-boosting sustainable innovation system’’, Technovation 122 (2023) 102581. https://doi.org/10.1016/j.technovation.2022.102581.

[24] Y. A. Selim, M. A. Azb, I. Ragab & M. H. M. A. El-azim, ‘‘Green synthesis of zinc oxide nanoparticles using aqueous extract of deverra tortuosa and their cytotoxic activities’’, Sci. Rep. (2022) 1. https://doi.org/10.1038/s41598-020-60541-1.

[25] L. He, Y. Liu, A. Mustapha & M. Lin, ‘‘Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum’’, Microbiol. Res. 166 (2011) 207. https://doi.org/10.1016/j.micres.2010.03.003.

[26] G. Wu, X. Liang, L. Zhang, Z. Tang, M. Al-Mamun, H. Zhao & X. Su, ‘‘Fabrication of highly stable metal oxide hollow nanospheres and their catalytic activity toward 4 - nitrophenol reduction’’, ACS Appl. Mater. Interfaces 9 (2017) 18207. https://doi.org/10.1021/acsami.7b03120.

[27] N. Jayarambabu, B. S. Kumari, K. V. Rao & Y. T. Prabhu, ‘‘Germination and growth characteristics of mungbean seeds (vigna radiata l.) affected by synthesized zinc oxide nanoparticles’’, Int. J. Curr. Eng. Technol. 4 (2014) 3412. https://inpressco.com/wp-content/uploads/2014/09/Paper593411-3416.pdf.

[28] K. M. Ezealisiji, S.-N. Xavier, B. Maduelosi & N. Nwachukwu, ‘‘Green synthesis of zinc oxide nanoparticles using Solanum torvum ( L ) leaf extract and evaluation of the toxicological profile of the ZnO nanoparticles – hydrogel composite in Wistar albino rats’’, Int. Nano Lett. 9 (2019) 99. https://doi.org/10.1007/s40089-018-0263-1.

[29] M. S. Geetha, H. Nagabhushana & H. N. Shivananjaiah, ‘‘Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent’’, J. Sci. Adv. Mater. Devices 1 (2016) 301. https://doi.org/10.1016/j.jsamd.2016.06.015.

[30] S. Faisal, H. Jan, S.Ali Shah, S. Shah, A. Khan, M. T. Akbar, M. Rizwan, F.Jan, W. N. Akhtar, A. Khattak & S. Syed, ‘‘Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Aqueous Fruit Extracts of Myristica fragrans : Their Characterizations and Biological and Environmental Applications’’, Am. Chem. Soc. Omega 6 (2021) 9709. https://doi.org/10.1021/acsomega.1c00310.

[31] S. Saravanan & D. R. S. Dubey, ‘‘Synthesis of SiO2 Nanoparticles by SolGel Method and Their Optical and Structural Properties’’, Rom. J. Inf. Sci. Technol. 23 (2020) 105. https://www.romjist.ro/full-texts/paper641.pdf.

[32] M. Dalal, A. Das, D. Das, R. S. Ningthoujam & P. K. Chakrabarti, ‘‘Studies of magnetic, Mössbauer spectroscopy, microwave absorption and hyperthermia behavior of Ni-Zn-Co-ferrite nanoparticles encapsulated in multiwalled carbon nanotubes’’, J. Magn. Magn. Mater. 460 (2018) 12. https://doi.org/10.1016/J.JMMM.2018.03.048.

[33] S. G. Bekele, D. D. Ganta & M. Endashaw, ‘‘Green synthesis and characterization of zinc oxide nanoparticles using Monoon longifolium leave extract for biological applications’’, Discov. Chem. 1 (2024) 5. https://doi.org/10.1007/s44371-024-00007-9.

[34] S. M. Alshahrani, E.-S. Khafagy, Y. Riadi, A. Al Saqr, M. M. Alfadhel & W. A. H. Hegazy, ‘‘Amphotericin B-PEG Conjugates of ZnO Nanoparticles: Enhancement Antifungal Activity with Minimal Toxicity.’’, Pharmaceutics 14 (2022) 1646. https://doi.org/10.3390/pharmaceutics14081646.

[35] C. R. Mendes, G. Dilarri, C. F. Forsan, V. de Moraes Ruy Sapata, P. R. M. Lopes, P. Bueno de Moraes, R. N. Montagnolli, H. Ferreira & Ederio Dino Bidoia , ‘‘Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens’’, Sci. Rep. 12 (2022) 2658. https://doi.org/10.1038/s41598-022-06657-y.

[36] A. Garjani, ‘‘Pharmaceutical sciences’’, Pharm. Sci. 22 (2016) 1. https://doi.org/10.15171/PS.2016.01.

[37] A. N. Chishti, L. Ni, F. Guo, X. Lin, Y. Liu, H. Wu, M. Chen, G. Wang Diao, ‘‘Magnetite-Silica core-shell nanocomposites decorated with silver nanoparticles for enhanced catalytic reduction of 4-nitrophenol and degradationofmethylenebluedyeinthewater’’, J.Environ.Chem.Eng.9(2021) 104948. https://doi.org/10.1016/j.jece.2020.104948.

[38] M.Nasrollahzadeh, M.Atarod, B.Jaleh&M.Gandomirouzbahani, ‘‘Insitu green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, congo red and methylene blue’’, Ceram. Int. 42 (2016) 8587. https://doi.org/10.1016/j.ceramint.2016.02.088.

[39] J. Chen, Z. Wu, J. Zheng, Y. Shi, L. Xie, F. Yang, Y. Wang, Z. Zhang, ‘‘Novel solid-state hydrolysis kinetics of NaBH4 for stable and highcapacity on-line hydrogen production’’, Chem. Eng. J. 486 (2024) 150062. https://doi.org/10.1016/j.cej.2024.150062.

[40] G. Zhou, Z. He & X. Dong, ‘‘Role of Metal Oxides in Cu-Based Catalysts with NaBH4 Reduction for the Synthesis of Methanol from CO2/H2’’, Catal. Letters 151 (2021) 1091. https://doi.org/10.1007/s10562-020-03379-6.

Published

2024-12-20

How to Cite

Green synthesis of zinc oxide nanoparticles: A trifecta of antioxidant, antifungal, and catalytic excellence. (2024). Recent Advances in Natural Sciences, 2(2), 127. https://doi.org/10.61298/rans.2024.2.2.127

Issue

Section

Articles

How to Cite

Green synthesis of zinc oxide nanoparticles: A trifecta of antioxidant, antifungal, and catalytic excellence. (2024). Recent Advances in Natural Sciences, 2(2), 127. https://doi.org/10.61298/rans.2024.2.2.127