Litho-structural study and depth estimation of Shaki area of Southwestern, Nigeria using high resolution aeromagnetic data

Authors

  • O. M Adedokun Department of Pure and Applied Physics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
  • O. P. Oladejo Department of Physical Sciences Education, Emmanuel Alayande University of Education, Oyo, Nigeria
  • K. O. Suleiman Department of Physics, School of Basic Sciences, Nigeria Maritime University, Okerenkoko, Nigeria
  • K. N. Alao Department of Pure and Applied Physics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
  • E. O Adeniyi Department of Pure and Applied Physics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
  • H. Otobrise Department of Physics, Lead City University, Ibadan, Nigeria
  • O. Adedokun Department of Pure and Applied Physics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
  • L. A. Sunmonu Department of Pure and Applied Physics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

Keywords:

Earthquake, Fault, High resolution aeromagnetic data, Euler deconvolution, Shaki

Abstract

Little studies have been carried out in the investigation of some geological faults associated with seismic activities in Nigeria; probably due to the fact that Nigeria is believed to be sitting on a seismically safe African plate. However, the nation has experienced series of tremors in the last few decades. Hence, there is a need to investigate the lithological structural trends in some parts of Southwestern Nigeria to determine the tectonic stability of the study area. This research therefore investigates the litho-structural trends and the overburden thickness around Shaki area, Southwestern, Nigeria. High resolution aeromagnetic data (HRAD) of Shaki (sheet 199) was obtained from the Nigeria Geological Survey Agency; it was processed, enhanced, and interpreted using Geosoft Oasis Montaj 6.4.2 data processing and analysis software package. The depth to basement analysis were done using Euler Deconvolution (ED), Radially Average Power Spectrum (RAPS) and Source Parameter Imaging (SPI) to evaluate the depth to basement of the investigated area. Results of the estimated depth to basement obtained from ED, RAPS and SPI revealed 136-6155 m, 0.2-0.65 m, 96-3229 m. Thus, based on the results obtained from the investigated area, the basement of the area is relatively shallow compared to sedimentary basement area. In conclusion, the faults in the area are responsible for the earth tremor experienced around Shaki in August 2021. Thus, the area could be further probed using seismic refraction method. 

Dimensions

[1] G. Vaculisteanu, M. Niculita & M. C. Margarint, ‘‘Natural hazards and their impact on rural settlements in NE Romania – A cartographical approach’’, Open Geosciences 11 (2019) 765. https://doi.org/10.1515/geo-2019-0060.

[2] O. P. Oladejo, T. A. Adagunodo, L. A. Sunmonu, M. A. Adabanija, N. K. Olasunkanmi, M. Omeje, I. O. Babarimisa & H. Bility, ‘‘Structural analysis of subsurface stability using aeromagnetic data: a case of Ibadan, southwestern Nigeria’’, Journal of Physics Conference Series 1299 (2019) 012083. https://iopscience.iop.org/article/10.1088/1742-6596/1299/1/012083.

[3] G. Grünthal, ‘‘Earthquakes, Intensity’’, in Encyclopedia of Solid Earth Geophysics, (eds) H. K. Gupta, Encyclopedia of Earth Sciences Series, Springer, Dordrecht, 2011, pp. 231–261. https://doi.org/10.1007/978-90-481-8702-7_23.

[4] O. U. Akpan & T. A. Yakubu, ‘‘A review of earthquake occurrences and observations in Nigeria’’, Earthquake Science 23 (2010) 289. https://doi.org/10.1007/s11589-010-0725-7.

[5] K. U. Afegbua, T. A. Yakubu, O. U. Akpan, D. Duncan & E. S. Usifoh, ‘‘Towards an integrated seismic hazard monitoring in Nigeria using geophysical and geodetic techniques’’, International Journal Physical Sciences 6 (2011) 6385. https://doi.org/10.5897/IJPS10.375.

[6] D. E. Ajakaiye, D. H. Hall, T. W. Millar, P. J. Verheijen, M. B. Awad & S. B. Ojo, ‘‘Aeromagnetic Anomalies and Tectonic Trends in and around the Benue Trough, Nigeria’’, Nature 319 (1986) 582. https://doi.org/10.1038/319582a0.

[7] D. E. Ajakaiye, M. A. Daniyan, S. B. Ojo & K. M. Onuoha, ‘‘The July 28, 1984 southwestern Nigeria earthquake and its implications for the understanding of the tectonic structure of Nigeria’’, A. M. Wassef, A. Boud & P. Vyskocil (Eds.), Recent Crustal Movements in Africa, Journal of Geodynamic 7 (1987) 205. https://doi.org/10/1016/0264-3707(87)90005-6.

[8] K. M. Onuoha, ‘‘Earthquake hazard prevention and mitigation in the West African region’’, in Natural and Man-Made Hazards, M. I. El-Sabh & T. S. D. Reidel Pub. Co., Dordrecht, (1988) 787. https://doi.org/10/1007/978-94-009-1433-954.

[9] L. R. Sykes, ‘‘Intraplate seismicity, reactivation of preexisting zones of weakness, alkaline magmatism, and other tectonism postdating continental fragmentation’’, Reviews of Geophysics 16 (1978) 621. https://doi.org/10.1029/RG016i004p00621.

[10] A. C. Johnston & L. R. Kanter, ‘‘Earthquakes in stable continental crust’’, Scientific American 262 (1990) 68. https://www.jstor.org/stable/24996786.

[11] M. L. Zoback, ‘‘Stress field constraints on intraplate seismicity in eastern North America’’, Journal of Geophysical Research 97 (1992) 761. https://digitalcommons.unl.edu/usgsstaffpub/464.

[12] K. Aki & W. H. Lee, ‘‘Glossary of interest to earthquake and engineering seismologists’’, International Handbook of Earthquake and Engineering Seismology 81B (2003) 1793. https://pubs.usgs.gov/publication/70205802.

[13] O. P. Oladejo, T. A. Adagunodo, L. A. Sunmonu, M. A. Adabanija, C. A. Enemuwe & P. O. Isibor, ‘‘Aeromagnetic mapping of fault architecture along Lagos–Ore axis, southwestern Nigeria’’, Open Geosciences 12 (2020) 376. https://doi.org/10.1515/geo-2020-0100.

[14] S. C. Odewumi, ‘‘Mineralization, geochemical signatures, and provenance of stream sediments on the Jos Plateau, Northcentral Nigeria’’, Journal of the Nigerian Society of Physical Sciences 6 (2024) 2181. https://doi.org/10.46481/jnsps.2024.2181.

[15] O. Akpoyibo, E. O. Abriku, F. C. Ugbe & O. Anomohanran, ‘‘Geophysical and geotechnical assessment of Obiaruku-Agbor Road failure in Western Niger-Delta, Nigeria’’, Journal of the Nigerian Society of Physical Sciences 7 (2025) 2328. https://doi.org/10.46481/jnsps.2025.2328.

[16] . T. O Lawal, O. Fawale, J. A. Sunday & G. B. Egbeyale, ‘‘Interpretation of airborne radiometric data of flamingo field, Southwestern Nigeria’’, Journal of the Nigerian Society of Physical Sciences 7 (2025) 1958. https://doi.org/10.46481/jnsps.2025.1958.

[17] A. Mamudu, E. S. Akanbi & S. C. Odewumi, ‘‘Hydrothermal alteration and mineral potential zones of Bauchi area Northeastern Nigeria using interpretation of aeroradiometric data’’, Journal of the Nigerian Society of Physical Sciences 7 (2025) 2193. https://doi.org/10.46481/jnsps.2025.2193.

[18] Nigerian Geological Survey Agency, ‘‘Geological map of Saki (Sheet199) area ’’. [Online], 2009. https://ngsa.gov.ng/geological-maps/.

[19] N. R. Paterson & C. V. Reeves, ‘‘Applications of Gravity, and Magnetic Surveys: The State-of-the-Art in 1985’’, Geophysics 50 (1985) 2558. https://doi.org/10.1190/1.1441884.

[20] R. J. Blakely, ‘‘Potential theory in gravity and magnetic applications’’, Cambridge University Press, Cambridge, UK, 1995, pp. 441–463. https://doi.org/10.1017/CBO9780511549816.

[21] S. O. Nwachukwu, ‘‘The tectonic evolution of the southern portion of the Benue trough, Nigeria’’, Geological Magazine 109 (1972) 411-419. https://doi.org/10.1017/S0016756800039790.

[22] M. A. Oladunjoye, A. I. Olayinka, M. Alaba & M. A. Adabanija, ‘‘Interpretation of high-resolution aeromagnetic data for lineaments study and occurrence of banded Iron formation in Ogbomoso area, Southwest Nigeria’’, Journal of African Earth Sciences 14 (2016) 43-53. https://doi.org/10.1016/j.jafrearsci.2015.10.015.

[23] D. T. Thompson, ‘‘EULDPH: a new technique for making computerassisted depth estimates from magnetic data’’, Geophysics 47 (1982) 31. https://doi.org/10.1190/1.1441278.

[24] A. B. Reid, J. M. Allsop, H. Granser, A. J Millett & I. W. Somerton, Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55 (1990) 80. https://doi.org/10.1190/1.1442774.

[25] J. B. Thurston & R. S. Smith, ‘‘Automatic conversion of magnetic data to depth, dig and susceptibility contrast using the SPItm method’’, Geophysics 62 (1997) 807. https://doi.org/10.1190/1.1444190.

[26] N. Whitehead, ‘‘MontajGrav/Mag interpretation: processing, analysis, and visualization system for 3D inversion of potential field data for Oasis Montaj v7.1’’, in Tutorial and user guide, Geosoft Inc., Canada, 2010, pp. 70–76. https://www.scribd.com/document/349623750/montajGravMagInterpretation-pdf.

[27] A. Spector & F. Grant, ‘‘Statistical models for interpreting aeromagnetic data’’, Geophysics 35 (1970) 293. https://doi.org/10.1190/1.1440092.

[28] I. Kivior & D. Boyd, ‘‘Interpretation of aeromagnetic experimental survey in Eromaga/Cooper Basin’’, Journal of Canadian Exploration Geophysics 34 (1998) 58. https://cseg.ca/cjeg-december-1998/.

[29] I. Blanco-Montenegro, J. M. Torta, A. Garcia & V. Arena, ‘‘Analysis and modeling of aeromagnetic anomalies of Gran Canaria (Canary Islands)’’, Earth and Planetary Science Letters 206 (2003) 601. https://doi.org/10.1016/S0012-821X(02)01129-9.

Published

2025-04-05

How to Cite

Litho-structural study and depth estimation of Shaki area of Southwestern, Nigeria using high resolution aeromagnetic data. (2025). Recent Advances in Natural Sciences, 3(1), 131. https://doi.org/10.61298/rans.2025.3.1.131

How to Cite

Litho-structural study and depth estimation of Shaki area of Southwestern, Nigeria using high resolution aeromagnetic data. (2025). Recent Advances in Natural Sciences, 3(1), 131. https://doi.org/10.61298/rans.2025.3.1.131